

Module 1
Question 1

a. Software Architecture of the IR System

-The first step is
 Assembling the document collection which may be private or crawled from The Web using a
Crawler Module.

-The document collection is stored in the disk storage, usually referred to as the central
repository.

-The documents in the central repository are then indexed, for fast retrieval and ranking.
 The most used index structure is an inverted index composed of all the distinct words of
the collection and for each word, a list of documents that contain it.

-Once the document is Indexed, the retrieval process can be initiated.
 It consists of retrieving documents that satisfy a user query(searching) or a click in a
hyperlink(browsing).

-To search a user first specifies a query, that reflects their information need.

-Next, the user query is parsed, and expanded. (with for instance spelling variants of a
query word).
 The expanded query is referred to as the System Query

-The system query is then processed against the index to retrieve a subset of documents.

-The Retrieved documents are then ranked and the top documents are returned to
user.
>A systematic evaluation process allows fine tuning of the ranking algorithm,
one evaluation is comparing the set of results produced by the IR system with
results suggested by human specialists.
>To improve the ranking we might also collect feedback from users and use this
information to change results.

b. The Retrieval and Ranking Process

Indexing Process
-Given the document representations, it is necessary to build an index of the text
Different structures might be used, but the most popular one is an inverted index.
-The steps required to generate the index compose of the indexing process
-The indexing process must be done "offline".
For which the Resources(time and storage) are amortized for every query that the
retrieval system makes

Retrieval Process
-The user first specifies a query that reflects their information need.
-The query is then parsed and modified by operations that resemble those done to
the documents.
-The expanded and modified query is then processed to obtain the set of retrieved
documents.
-Fast query processing is made possible by the index structure previously built.

Ranking Process
-The retrieved documents are ranked according to a likelihood of relevance to the
user.
-The top ranked documents are then formatted for presentation to the user.
-The formatting consists of retrieving the title of the documents and generating
snippets for them

Question 2

a. (i). Query Specification
● Methods:

○ Users primarily specify queries by entering keywords into a search box.
○ Selecting links from directories or other information displays.

● Characteristics:
○ Web queries are typically short, often consisting of just one to three words.
○ "Testing the Waters": Users often start with short queries to explore the

search results and refine their search terms iteratively.
○ "Orienteering Strategy": Users often use a general query to find promising

websites and then navigate within those sites to find more specific
information.

● Interfaces:
○ The standard interface is a text box for entering search terms.

○ Some search engines use forms with multiple fields for more complex query
specifications.

● Boolean Operators and Command-Line Syntax:
○ Limited Use: While supported by some search engines, Boolean operators

and command-line syntax are not widely used by most web users due to their
complexity.

○ Difficulty: Many users find these advanced syntaxes confusing and difficult to
use correctly.

● Evolution of Web Search:
○ Early Search Engines: Initially focused on Boolean operators and

command-line syntax, which were often difficult for users.
○ Shift to Keyword Queries: Web search engines shifted towards

keyword-based queries, with a focus on ranking results based on the
relevance of keywords within the content.

○ Conjunctive Queries: Google introduced conjunctive queries, requiring all
search terms to be present in the results, which improved search accuracy.

○ Sophistication: Modern search engines use more sophisticated ranking
algorithms that consider various factors like term proximity, page importance,
and user intent.

 (ii) Query Reformulation:

-After a query is specified and results have been produced, a number of tools exist to help
the user reformulate their query, or take their information seeking process in a new
direction.

-One of the most important query reformulation techniques consist of,
 >Showing terms related to the query or to the documents retrieved in response to the query.

-A special case of this is spelling corrections or suggestions; by one estimate
typographical errors occur in about 10-15% of queries.
 In search interfaces, usually only one suggested alternative is shown; clicking on that
alternative re-executes the query.

-In addition to spelling suggestions, search interfaces are increasinlgy employing related
term suggestions, a technique often referred to as term expansion.

>Early attempts to use term expansions in search interfaces showed more than a dozen
thesaurus terms, and often forced the user to select among these before showing any
search results.

>More recent studies suggest that a smaller number of suggestions requiring only one click
is a preffered approach.

-Many strategies are employed for Query term suggestions:-
 >One strategy is to base the suggestions on the entire search of the particular user.
 >Another strategy is to show similar queries by other users.

 >Relevance feedback is another method that can be used.
 The main idea is to have the user indicate which documents are relevant to their query

b. Visualization of search interface:

-Text as a representation is highly effective for conveying abstract infromation, but
reading and even scanning text is a highly cognitively taxing activity, and must be
done in a linear fashion.
-By contrast images can be scanned quickly and the visual system perceives
information in parallel.
-People are highly attuned to images and visual information.
-A visual representation can communicate some kinds of information much more
rapidly and effectively than any other method.

Experimentation with visualization for search has been primarily applied in the
following ways:-
• Visualizing Boolean Syntax
• Visualizing Query Terms within Retrieval Results
• Visualizing Relationships among Words and Documents
• Visualization for Text Mining.

Visualizing Boolean Syntax
-A common approach to visualize Boolean Query Specification is to show Venn
Diagram visually.
-A more flexible version of this is seen in the VQuery System.

-Each Query term is represented by a circle or oval,
-The Intersection among circles indicates ANDing (conjoining) of terms

-The Disjunction is represented by sets of circles within an active area of the canvas
-And Negation is done by deselecting a circle within the active area.
-One Problem with Boolean queris is that they can easily end up with empty results
or too many results.
To remedy this, the filter-flow visualization allows users to lay out the different
components of the query, and show via a graphical flow how many hits would result
after each operator is applied.

-Other types of Boolean queries include lining up blocks vertically and horizontally.
and representing components of queries as overlapping "magic" lenses.

Visualizing Query Terms within Retrieval Results
-We have seen that, Query terms within the retrieved documents can help with the
assessment of relevance.
-Experimental visualizations have been designed that make this relationship more
explicit.
-One of the best known is the TileBars interfce, in which documents are shown as
horizontal glyphs with the locations of the query terms hits marked along the glyph.

-The user is encouraged to break the query into its different facets, with one concept
per line, and
then the horizontal rows within each document's representation show the frequency
of occurence of query terms within each topic.
-Longer documents are divided into subtopic segments, either using paragraph or
section breaks, or an automated discourse segmentation technique called TextTiling
-Grayscale implies the frequency of query term occurences.
The visualization shows where the discussion of the different query topics overlaps
within the document.
-Other approaches to showing query terms hits within document collections include
placing the query terms in bar charts, scatter plots and tables.
-Another variation on the idea of showing query term hits within the documents is to
show thumbnails - miniaturized rendered versions of the visual appearance of the
documents:-
>Some studies show that thumbnails had no effect
>While a related study shows that highlighting related terms within a thumbnail did
improve usability for search results

Visualizing Relationships Among Words and Documents
-Numerous visualization developers have proposed variations on the idea of placing
words and documents on a two-dimensional canvas,
Where Proximity of glyphs represents semantic relationships among the terms or
documents.
-An Early version of this idea is seen in the VIBE interface, where Queries are laid
out on a plane, and documents that contain combinations of the queries are placed
midway between the icons representing those terms.

-Another variation of this idea is to map documents or words from a very high
dimensional space down into a two-dimensional plane, and show where the
dcuments or words fall within that plane.

-These views are relatively easy to compute and can be visually striking.
-However, evaluations conducted so far provide negative evidence as to their
usefulness.
-A more promising application of this idea is in the layout o thesaurus terms in a
small network graph, such as used in Visual Wordnet

Visualizing for Text Mining
-Visualization is not very useful for users of search systems.
Users of search systems are not interested in seeing HOW words are distributed
across documents or in viewing the most common words within a collection.
-These are interesting activities for computational linguists, analysts and curious
word enthousiasts.
-Visualizations such as the Word Tree show a piece of a text concordance, allowing
the user to view which words and phrases commonly precede or follow a given word.

-Visualization is also used in search interfaces intended for analysts.

Module 2
Question 3

a. A Taxonomy of IR Models

-We distinguish IR models into three major types:
 >Those based on Text:-
 Here we distinguish into models for unstructured text and models that structure of the text
i) Unstructured text: where text is modelled as simply a sequence of wordsThese have three
classic models in IR called Boolean, vector and probabilistic.
 +In the Boolean Model, documents are represented as sets of index terms. This
model is called as Set Theoretic
 +In the Vector Model, documents and queries are represented as vectors in a
t-dimensional space. The model is algebraic.
 +In the Probabilisitic Model, The framework for modelling document and query
representation is based on probability theory. Thus the model is Probabilisitc.

ii) Semi-structured text: Structural components of the text such as title, sections, subsections
and paragraphs are an integral part of the model.We consider models that deal with
structure provided within the text, we consider indexing approaches such as the Proxmial
nodes and XML-Based Indexing Methods.
 >Those based on Links:-
 On the web, text-based ranking is not enough, it is also necessary to consider the links
among webpages as an integral part of the model
 This leads to link based retrieval methods, particularly PageRank and Hubs and
Authorities
 >And those based on Multimedia Objects:-
 `The simplest form of multimedia retireval is image retrieval because an image is static
 `In the case of audio and video, the representation of the multimedia object has to also
include the time dimensions which makes the files larger and the problem more difficult.

b. (i) The boolean Model:

-The Boolean Model is a simple retrieval model based on set theory and Boolean algebra.
 -As a result, the model is quite intuitive and has precise semantics.

-The Boolean model considers that index terms are present or absent in a docoument
 i.e, the term-document frequencies in the term-document matrix are all binary.

-A query q is composed of index terms linked by three connectives : not,and,or

-If the document satifies the conditions involving the query terms, then there is a query
conjunctive component that matches the document conjunctive component.

Advantages:-

+The main advantages of the Boolean model are the clean formalism behind the model
and
 +its simplicity, with the adoption of binary index term weights

Disadvantages:-

-The main disadvantages are that there is no ranking, which might lead to the retrieval of
too few or too many documents
 -Lack of Index term weighting,
 -It does not take into account Term-term correlation and assumes that the terms are
mutually independent.

Example:

(ii) Term Weighing:

-We notice that not all terms are equally useful in describing a documents contents.
 -Distinct index terms have varying importance when used to describe document contents.
This effect is captured through the assignment of numerical weights to each index term of
a document

-The weights are influenced by the documents in the collection

-To account for term importance we must compute weights that reflect the importance of the
term in the collection and in each particular document.
 These weights depend on the frequencies of occurence of terms within documents, which
we define as follows.

Question-4

a. Representing documents documents and quries through sets of keywords yields
descriptions which are only partially related to the real semantic contents of the
respective documents and queries.

As a result, the matching of the documents to the query terms is approximate. This
can be modelled by considering each query term defines a fuzzy set and that each
document has a degree of membership (usually smaller than 1) in this set.

The three most commonly used operations on fuzzy sets are:

>The complement of a fuzzy set

>The union of two or more fuzzy sets

>The intersection of two or more fuzzy sets

Example:

b. (i) Neural Network Model:

-In an information retreival system, index terms in documents and queries have to be
matched and weighted for computation of a ranking.

-Since neural networks are known to be good pattern matchers, it is natural to consider their
usage as an alternative model for information retrieval

-A neural network is an oversimplified graph representation of the mesh of interconnected
neurons in a human brain.

-A weight is assigned to each edge of our neural network.
 -At each instant the state of a node is defined by it's activation level.

(ii) Latent Semantic Indexing Model:

-The main idea in the latent semantic indexing model is to map each document and query
vector into a dimensional space composed of concepts.

-This is accomplished by first mapping the index term into this dimensional space of
concepts and then modelling documents and queries in terms of these mappings.

-The claim is that retrieval in the reduced space of concepts may be superior to retrieval in
the space of index terms.

-The latent semantic indexing model introduces an interesting conceptualization of the
information retrieval problem based on SINGULAR VALUE DECOMPOSITION.

-From a practical point of view the latent semantic indexing model has not yielded
encouraging results.

Example:

Module 3
Question 5

a. Precision and Recall

Scenario:

● We have a collection of documents and a specific query (q1).
● A group of experts has identified 10 documents (R1) as relevant to query q1.
● R1 = {d3, d5, d9, d25, d39, d44, d56, d71, d89, d123}

Algorithm and Ranking:

● A new retrieval algorithm is introduced.
● This algorithm ranks documents in response to query q1 as follows:

1. d123
2. d84
3. d56
4. d6
5. d8
6. d9
7. d511
8. d129
9. d187
10. d25
11. d38
12. d48
13. d250
14. d113
15. d3

Relevant Documents in the Ranking:

● The relevant documents (from R1) are marked with a bullet in the ranking.
● Relevant documents in the ranking: d123, d56, d9, d25, d3

Precision and Recall Calculation:

● Precision: The proportion of retrieved documents that are actually relevant.

● Recall: The proportion of relevant documents that are retrieved by the algorithm.

● At 10% Recall (1 out of 10 relevant documents):

○ The first retrieved document is d123, which is relevant.
○ Precision = 1/1 = 100%

● At 20% Recall (2 out of 10 relevant documents):

○ The next relevant document is d56 (ranked 3rd).
○ Precision = 2/3 = 66.6%

● Precision at Higher Recall Levels:

○ As more irrelevant documents are retrieved, precision drops.
○ If all relevant documents are not retrieved, precision eventually drops to 0%.

Precision-Recall Curve:

● The text mentions a precision-recall curve (Figure 4.2) that visually represents the
relationship between precision and recall at different levels.

● This curve is typically used to evaluate and compare the performance of different
retrieval algorithms.

In essence, this example demonstrates how to calculate precision and recall based on
the ranked list of documents retrieved by an algorithm and the set of known relevant
documents.

b. Explicit feedback Evaluation:

Human Experimentation in the Lab

-To Evaluate the impact of the user interface(UI) on user preferences it is necessary to run
several evaluation sessions which look identical except for a few specific characterisitcs of
the UI that are varied with the purpose of measuring their impact on user preferences

-Human Experimentation in the lab allows understanding dynamic characteristics of the
user-system interaction that cannot be evaluated using static reference collections.

-The downside is that they are costly to setup, costly to be repeated and are limited to a
small set of information needs. That are executed by a relatively small set of human
subjects.

Side by Side Panels:

Side-by-Side Experiment:

● In a side-by-side experiment, users are presented with two sets of search results,
typically from different search engines, side-by-side.

● The users are then asked to judge which set of results is better for a given query.
● This judgment is based on the user's assessment of the relevance and quality of the

results.

Evaluation Process:

● The evaluation is based on the judgments of multiple human assessors.
● If a majority of assessors prefer one set of results over the other, it is considered to

be better for that query.

A/B Testing

-It is also called bucket testing, it is a popular method for performing evaluation experiments.

-It consists of displaying to selected users a modification of the layout of a page

-By analysing how the users react to the change, it is possible to gain understanding on
whether the modification is positive or not.

-Usually the set of users is a small fraction of all users in the site.

-The technique is particularly important with heavily used sites because a poor
modification that is launched might cause an annoyance to millions

Crowdsourcing

-Recently, crowdsourcing has emerged as a feasible alternative for relevance evaluation
because it combines the flexibility of the editorial approach at a larger scale.

-Crowdsourcing is a term used to describe tasks that are outsourced to a large group of
people called "workers", instead of performed by an employee or contractor.

-The lower cost of running experiments makes this approach very attractive for testing new
ideas with a fast turnaround

Evaluation using Clickthrough Data

-Another alternative is evaluation based on the analysis of clickthrough data.

-This is particularly attractive because clickthrough data can be collected at a very low cost
without overhead for the user

Implicit feedback Evaluation:

Implicit Feedback Information

-In an implicit relevance feedback cycle, there is no participation of user in the feedback
process. Instead the feedback information is derived implicitly by the system.

-There are two basic approaches for compiling implicit feedback infromation:-

a) derive the feedback information from the top ranked documents in the result set.
 This is usually referred to as local analysis.

b) Derive the Feedback information from external sources such as a thesaurus or from term
relations extracted from the document collection
 This is usually referred to as global analysis

Question 6

a. Implicit Feedback Through Global Analysis

-The methods of local analysis extract information from the documents retrieved to expand
the query.
 -An alternative approach is to expand the query using information from the whole set of
documents in the collection. Strategies based on this idea are called
 "global analysis procedures".

-There are two modern variants of global analysis. Both of them are based on a
thesaurus-like structure built using all the documents in the collection.

 Query Expansion based on a Similarity Thesaurus

-A similarity thesaurus is built using term-term relationships, which are derived by
considering that the terms are concepts in a concept space.
 In this concept space, each term is indexed by the documents in which it appears.

Thus the terms assume the original role of documents while documents are interpreted as
indexing elements.

Step 1:

Step 2:

Step 3:

Query Expansion based on a Statistical Thesaurus

-The global statistical thesaurus is composed of classes that group correlated terms in the
context of the whole collection.

-Such correlated terms can then be used to expand the original user query.

-To be effective, the terms selected for expansion must have high term discrimination
values, which imply that they must be low frequency terms.
 However, it is difficult to cluster low frequency terms due to the small amount of
information about them.

-To circumvent this problem, documents are clustered into classes instead and the low
frequency terms in these documents are used to define thesaurus classes using a
clustering algorithm

-A document clustering algorithm that produces small and tight clusters is the complete link
algorithm

Example:-

b. Text Properties

(i)Information Theory

-It is difficult to formally capture how much information is encoded in a given text.
 For example, a text in which one symbol appears almost all the time does NOT convey
much information

-We can use this idea to assign different bit sequences or CODES to different symbols.

-Source Code Theorem: In an optimal encoding scheme, a symbol that is expected to occur
with probability p should be assigned a codeword of length log2(1/p) bits.
 The number of bits in which a symbol is best encoded represents the information content
of the symbol.

(ii) Modelling Natural Language

-Text is composed of symbols from a finite alphabet, which can be divided in two disjoint
subsets:
 a) Symbols that separate words (called separators),
 b) Symbols that belong to words.

-More complex models include finite-state models, which define regular languages, and
grammar models which define context-free and other langauges.

However, finding the right grammar for natural language is still a difficult and ongoing
problem.

-Another issue of importance is how the different words are distributed inside each
document.

-A third issue is the distribution of words in the documents of a collection.

-The fourth issue is the number of distinct words in a document, this set of words is
referred to as the document vocabulary V

-A last issue is the average length of words, this relates the text size in words with the text
size in bytes.

These issues are some of the few that make modelling natural language such a difficult
problem to overcome

(iii)Text Similarity

-We define notions of syntactic similar between strings or documents in the form of a
distance function.

● Similarity Measurement:

○ Similarity between objects is often measured using a "distance function."
○ A lower distance value generally indicates higher similarity.
○ Example: Hamming Distance - Measures the number of positions where two

strings of the same length differ.
● Edit Distance (Levenshtein Distance):

○ Measures the minimum number of single-character edits (insertions,
deletions, substitutions) required to transform one string into another.

○ Considered superior to methods like Soundex for modeling syntactic errors.
○ Can be extended with weighted operations or by adding transposition as an

edit operation.
● Similarity in Documents:

○ The concept of similarity extends to documents.
○ One approach is to compare lines in two files and compute the longest

common sequence. This is used by the Unix "diff" command.
○ Limitations: Time-consuming and doesn't consider similarity within lines.

● Other Approaches to Document Similarity:

○ Fingerprinting: Extracting characteristic pieces of text to represent the
document.

○ Finding Large Repeated Pieces: Identifying common segments within
documents.

○ Visual Display: Tools like Dotplot create visual representations of document
similarity by comparing lines and displaying the results as a heatmap.

-Examples include Hamming Distance and Levenshtein Distance(Edit distance)

-Similarity can be extended to Documents

-Most efficient document similarity measures include the use of cosine distance and the
resemblance measure

The first uses the vector model representation of each document and apply the cosine
distance with one of the multiple weighting functions available

The second is called resemblance.

-We can also transform any similarity measure, so long as it's in the range [0,1] into a
distance function through

Module 4

Question 7

a. Full Inverted Indexes

-The basic inverted index is NOT suitable for answering phrase or proximity queries,
because it does not contain information about where exactly the document in each word
occurs

-To do this we need to add the positions of each word in each document to the index.
 Word positions simplify phrase and proximity queries, while
 Character positions facilitate direct access to the matching text positions.

-This type of inverted index is called a full inverted index.

-The space required to store a full inverted index will be proportional to the overall number of
occurrences, which is in turn proportional to the size of the text.

b. i) Signature Files

-Signature files are word-oriented index structures based on hashing.
 -They pose a low overhead (10% to 20% over the text size), at the cost of forcing a
sequential search over the index.

-Although the search complexity is linear (as opposed to sublinear), its constant is rather
low, which makes the technique suitable for not very large texts.

-While inverted indexes outperform signatures files for most applications

 Structure

-A signature file uses a hash function(signature) that maps word blocks to bitmasks of size B
bits.

 -It divides the text in blocks of b words each, and to each block assigns a bit mask of size B.
 -The bitmask is obtained by bit-wise ORing the signatures of all the words in the text block.

-Hence, the signature file is no more than a sequence and bitmasks of all blocks (plus a
pointer to each block)

-The main idea is that if a word is present in a text block, then all the bits set in its signature
are also set in the bitmask of the text block.
 Hence, whenever a bit is set in the mask of the query word and not in the mask of the text
block, then the word is not present in the text block

Searching

-Searching a single word is carried out by hashing it to a bitmask W, and then comparing the
bitmasks Bi of all the text blocks.
 -Whenever W & Bi = W the text block may contain the word.
 Hence for all candidate text blocks, an online traversal must be performed to verify if the
word is actually there.

Construction

-The construction of a signature file is rather easy.
 The text is simply cut in blocks and for each block an entry of the signature file is
generated.

-This entry is the bit-wise OR of the signatures of all the words in the block

-Adding text can be done easily, since it is only necessary to keep adding records to the
signature file.

-Text deletion is carried out by deleting the appropriate bitmasks.

Compression

-There are many alternative ways to compress signature files.
 All of them are based on the fact that only a few bits are set in the whole file

-It is then possible to use efficient methods to code the bits which are not set, for instance
run-length encoding.

b. ii) Structure: Tries and Suffix Trees

Tries

-Tries or digital search trees, are multi-way trees that store sets of strings and are able to
retrieve any string in time proportional to its length.

 -A suffix trie is in essence a trie data structure built over all the suffixes of the text T =
t1t2...tn, tn = '$'. The pointers to the suffixes ti...tn are stored at the final states. i.e the leaves.

-To reduce the number of nodes in a trie, the suffix trie removes all unary paths that
finish at a leaf.

Suffix Trees

-To further reduce the space requirement, all the remaining unary paths can be
compressed. The result is a suffix tree

-Since there are n leaves and every internal node has atleast two children, the total size
of the suffix tree is O(n).

-Edges in a suffix tree are labelled by strings in general.

-The problem with suffix trees are the space requirement. Depending on the implementation
the suffix tree takes 10 to 20 times the space of the text itself.

-The main property that permits finding all text substring equal to a given pattern string P =
p1p2...pm.

Every text substring is a prefix of a text suffix.

-The main idea is to descend into a trie by following all the characters of P.
 >This drives us to the last node shared by all the trie suffixes that start with P.

>The leaves that descend from the node are the starting positions of the suffixes that start
with P. i.e they point precisely to the occurrences of P in T.

-A suffix tree for a text of n characters can be built in O(n) time. The algorithm however,
performs poorly in practice if the suffix tree does not fit in main memory.

-This is especially stringent, because of the large space requirements of the suffix trees.

Question 8

a. Suffix trees and Arrays

 -Suffix trees and Suffix arrays enable indexed searching for any text substring matching a
query string or a complex pattern

-These indexes regard the text as one long string. Each position in the text is considered as
a text suffix(that is a string that goes from that text position to the end of the text.)

-Suffix trees and arrays are better than inverted indexes at searching for long phrases,
which require no special treatment compared to searching for words.

Structure: Tries and Suffix Trees

Tries

-Tries or digital search trees, are multi-way trees that store sets of strings and are able to
retrieve any string in time proportional to its length.

 -A suffix trie is in essence a trie data structure built over all the suffixes of the text T =
t1t2...tn, tn = '$'. The pointers to the suffixes ti...tn are stored at the final states. i.e the leaves.

-To reduce the number of nodes in a trie, the suffix trie removes all unary paths that
finish at a leaf.

Suffix Trees

-To further reduce the space requirement, all the remaining unary paths can be
compressed. The result is a suffix tree

-Since there are n leaves and every internal node has atleast two children, the total size
of the suffix tree is O(n).

-Edges in a suffix tree are labelled by strings in general.

-The problem with suffix trees are the space requirement. Depending on the implementation
the suffix tree takes 10 to 20 times the space of the text itself.

 Suffix Arrays

-Suffix Arrays provide essentially the same functionality as suffix trees with much lower
space requirements.

-If the children of the suffix tree nodes are sorted left-to-right in lexicographical edge-label
order

-The suffix array is obtained by collecting all the tree leaves in left-to-right order.

 -A suffix array of T is defined as the array pointing to all the suffixes of T where the
suffixes have been lexicographically sorted.

-A suffix array takes typically four(4) times the text size which makes it appealing for
longer texts

Searching

-The main property that permits finding all text substring equal to a given pattern string P =
p1p2...pm.

Every text substring is a prefix of a text suffix.

-The main idea is to descend into a trie by following all the characters of P.
 >This drives us to the last node shared by all the trie suffixes that start with P.

>The leaves that descend from the node are the starting positions of the suffixes that start
with P. i.e they point precisely to the occurrences of P in T.

 -Searching in a Suffix Array is slightly different,
 >Since all the suffixes sharing prefix P are lexicographically contiguous, we can find the
suffix array interval containing all the answers via two binary searches, that find the first
and the last suffixes of P.
 >Since each step in the binary search requires comparing P against a text suffix, the search
cost is O(m log n).

Searching for Complex Patterns

-Searching for a complex pattern using a suffix trie is accomplished by simulating the
corresponding sequential algorithm and backtracking over the trie.

-If we wish to search for a certain regular expression. We build it's automaton, to detect all
the text suffixes that start with a string matching the regular expression

-The algorithm begins at the trie root,
 For each child of the current node, (labelled by character c),
 >The automaton is fed with c and the algorithm enters the subtree.
 >When the recursion returns from the subtree, the original automaton state before feeding
it with c is restored.
 >The process is repeated for each children of the current node

 Construction

-A suffix tree for a text of n characters can be built in O(n) time. The algorithm however,
performs poorly in practice if the suffix tree does not fit in main memory.

-This is especially stringent, because of the large space requirements of the suffix trees.

 -We concentrate more on direct suffix array construction,
 Since the suffix array is no more than a set of text pointers in lexicographic order, a simple
way to generate it is to lexicographically sort all the pointed suffixes using any classic sorting
algorithm.

Construction of Suffix Arrays for Large Texts

-When the data does not fit into the main memory. A specific algorithm for secondary
memory construction is required.

Compressed Suffix Arrays

-Compressed suffix arrays replace the text, in the sense that they are able to reproduce any
text substring and therefore, the text needs not be stored.
 These are called self-indexes.

-We present the two main approaches to suffix array compression.

a) Using the Function ψ

b) Using the Burrows-Wheeler Transform

b. i) Faster Bit- Parallel Algorithms

-There are some bit-parallel algorithms that can handle complex patterns and still skip
text-characters

-The algorithm runs progressively slower as the pattern gets more complex

 Suffix Automata

The suffix automaton of a pattern P is an automaton that recognizes all the suffixes of P.

-The BNDM algorithm is an example of the implementation of the
 Suffix Automaton using bit-parallelism and achieves improved performance when the
pattern is not very long.

BDM Algorithm

 Interlaced Shift-AND

-Another idea to achieve optimal search time is to read one text character out of q

b. ii) Multi-dimensional indexing

-In multimedia data, we can represent every object by several numerical features.
-One way to search in this case is to map these object features into points on a
multi-dimensional space and to use multi-attribute access methods. (referred to as
spatial access methods or SAMs) to cluster them and to search for them

-Another way to approach is to have a distance function for objects and then use a
distance-based index(called metric access methods or MAMs)

-The main mapping methods form three main classes:

(1) R*trees and the rest of the R-tree family
 (2) Linear Quadtrees
 (3) Grid-Files

-The R*-tree is structurally identical to an R-tree; the main difference is a clever
improvement on the split algorithm, based on the concept of forced reinsert.

When a node overflows, some of its children are carefully chosen; they are deleted and
reinserted, usually resulting in a R-tree with a better structure

Module 5

Question 9

a. Search Engine Architecture

-Most search engines use a centralized crawler-indexer architecture.

● Crawlers(also called Spiders, Robots, Wanderers or Walkers) are Programs that
traverse the Web sending new or updated pages to a main server.
 Crawler runs on a local system and sends requests to remote Web servers.

● The Index is used in centralized fashion to answer queries submitted from different
places on the Web.
Most search engines use variants of the Inverted index.
In simple terms and inverted index consists of a list of terms where each term is
associated with a list of pointers to the pages in which it occurs.

● Given a Query, the set of answers displayed is a subset of the complete result set.

● Search engines typically only retrieve a subset of the most relevant results for
a query (usually 10). They don't calculate the entire result set to save time and
resources.

● Further results are computed on demand only when the user requests them,
improving efficiency.

● The inverted index is a core data structure used for fast searching. It maps
terms to the documents containing them. State-of-the-art techniques can
significantly reduce the size of the inverted index.

● The sheer volume of the web poses a significant challenge for search engines,
as they need to handle massive amounts of data. The early crawler-indexer
architecture faced limitations in scaling to handle the rapidly growing web.

● To address the scalability issues, modern search engines distribute and
parallelize the processing of data across multiple machines.

● The main problem faced by this architecture is the gathering of data and the sheer
volume of data

● In fact, the crawler-indexer architecture was not able to cope with the Web growth at
the end of the 1990s.

● The solution was to distribute and parallelize computation.

b. Cluster based Architecture
● Current search engines use a massive parallel and cluster-based architecture.
● Due to the large size of the document collection, the inverted index does not fit in a

single computer and must be distributed across the computers of a cluster
● Document partitioning is used, The large volume of queries implies that the basic

architecture must be replicated in order to handle the overall query load, and
● Each cluster must handle a subset of the query load
● Queries originate from all around the world, and internet latency is appreciable in

many continents.
● Cluster Replicas are maintained in different geographical locations to decrease

answer time.
● Cluster replicas also, allows search engines to be fault-tolerant in most typical

worst-case scenarios, such as power
● There are also other many crucial details to be carefully addressed in this type of

architecture

Question 10

a. XML Retrieval Evaluation

-Due to these particular characteristics of structured text, the evaluation of XML retrieval
systems requires the building of test collections where the evaluation of paradigms are
provided according to criteria that take into account the inherent structural constraints i.e
the element structural relationships.

-The Initiative for Evaluation of XML retrieval (INEX) established an infrastructure in the form
of large test collections and appropriate measures for evaluating XML retrieval effectiveness.

 Document Collections

-The document collections used in INEX up to 2004 consisted of 12,107 articles marked-up
in XML, from 12 magazines and 6 transactions of the IEEE Computer Society's publications.

-On Average an article contains 1532 XML nodes, where the average depth of the node is
6.9.

-In 2005, the collection was extended with further publications from the IEEE Computer
Society. A total of 4712 new articles from the period of 2002-2004 were added giving a total
of 16,819 articles totalling 764 MB in size and 11 million elements

-Since 2006, INEX uses a different document collection, made from English documents from
Wikipedia.

 Topics

-CO and CAS topics reflect users with varying levels of knowledge about the structure of
the collection to search for relevant information.

-CAS topics fit the needs of users who want to take advantage of knowledge on the
document structure to improve the quality of results.

Retrieval Tasks

-A major departure from traditional flat document retrieval is that XML retrieval systems need
not only score elements with respect to their likelihood relevance to a query, but
 Also need to determine the appropriate level of element granularity to return to it's users.

-The task of an XML retrieval system in INEX was to return instead of whole documents,
those XML elements that are most relevant i.e most specific and exhaustive to the user's
query.

-In other words XML systems should return components that contain as much relevant
information and as little irrelevant information as possible

-With this generic task, the actual relationship between retrieved elements was not
considered and many systems retrieved overlapping elements

Relevance

-In terms of traditional document retrieval, it is usually understood asthe connection between
a retrieved item and the user's query

-In XML retrieval, the relationship between a retrieved item and the user's query is further
complicated by the need to consider the structured in the documents.

-Since retreived elements can be at any level of granularity, an element and one its children
can both be given as relevant to a query.

 The child element may be more focused on the query than its parent element, which may
contain additional irrelevant content

In this case, the child element is better to retrieve than the parent because it is more
SPECIFIC to the query.

-In addition a multiple degree scale was necessary to allow explicit representation of how
exhaustively a topic is discussed within an element with respect to its children
elements.

 Measures

-Measuring XML Retrieval effectiveness requires considering the dependencies among
the elements.

-Users in XML retrieval have access to other structurally related elements in the result set.
 They may hence locate additional relevant information by browsing or scrolling down the
element.
 Hence this motivates the need to consider so called near-misses, which are elements from
where users can access relevant content

-More formally let hlength(e) be the length in characters of highlighted text contained in
element e for a given topic
 -Let length(e) be the total number of characters contained in element e,
 -And let Trel be the total amount of (highlighted) relevant information in the collection for the
topic.
 -Let erank(i) be a function that returns the element at ranked i.

Precision at rank r, indicated by P@r, is the fraction of retrieved relevant information upto
rank r

-The definition ensures that, to achieve a high precision at rank r, the elements retrieved up
to and including that rank need to contain as little non-relevant information as possible.

 -Recall at rank r, indicated by R@r, is the fraction of relevant information retrieved up to rank
r.

-This definition ensures that to achieve a high recall value at rank r, the elements retrieved
up to and including that rank need to contain as much relevant information as possible.

-Trel depends on whether returning overlapped elements is allowed or not
 >For the thorough sub-task, Trel is the total number of highlighted characters across all
elements
 >For the focused sub-task, Trel is the total number of highlighted characters across all
documents.

b. i) Structure of Web Graph

-It is commonly agreed that the Web can be viewed as a graph in which,
 the Nodes represent individual pages and the edges represent links between pages

-The most complete study was conducted by Broder et al, and it compared the topology of
the Web graph to a bow-tie.

The components identified in the graph were the following:-

a. CORE: sites that compose the strongly connected component of the graph. By
definition one can navigate from any site in CORE to any other site in CORE.

b. IN: sites that can reach sites in CORE but cannot be reached from sites in
CORE

c. OUT: sites that can be reached from sites in CORE, but without a path to go
back to CORE.

d. TUBES: Sites in paths that connect directly IN to OUT and that are outside
CORE.

e. TENTACLES or TENDRILS: Sites that can be reached from sites in IN and
sites that only reach sites in OUT, but do not belong to the previous components

f. DISCONNECTED or ISLANDS: unconnected sites whose connected
component have a similar structure to the whole web

This notation was extended by dividing the CORE components into four parts as described:-

a. Bridges: Sites in CORE that can be reached directly from the IN component
and that can reach directly the OUT component

b. Entry Points: Sites in CORE that can be reached directly from the IN
component but are not bridges

c. Exit Points: Sites in CORE that reach OUT component directly, but are not in
Bridges

d. Normal: Sites in CORE not belonging to the previously defined
sub-components

b. ii) Link based Ranking

- Given that there might be thousands or even millions of pages available for any given
query,
 -the problem of ranking those pages to generate a short list is probably one of the key
problems in Web IR

-The number of hyperlinks that point to a page provides a measure of its popularity and
quality.
 Further, many links in common among pages and pages referenced by a same page are
often indicative o page relations with potential value for ranking purposes.

HITS

-This ranking scheme is query-dependent, and considers the set of pages S that point to or
are pointed by pages in the answer.

-Pages that have many links pointing to it in S are called authorities
 Because they are susceptible to contain authoritative and relavant content

-Pages that have many outgoing links are called hubs
 Because they are susceptible to point to relevant similar content.

A positive two-way feedback exists:
 >Better authority pages come from incoming edges from good hubs and
 >better hub pages come from outgoing edges to good authorities.

PageRank

-The best known link-based weight is PageRank, which is part of the ranking algorithm
originally used by Google
 -PageRank simulates a user navigating randomly on the Web.

-After a large number of moves we can compute the probability with which our user
visited each page.
 This probability is a property of the graph, which was referred to as PageRank in the context
of the Web.

-An additional case is considered in which a the "user" can jump to any other page in the
graph with a small probability q.
 This is done to avoid dead ends i.e links without outgoing links and also self-links

