




Module 1 
 

1. Define AI. Explain the foundation of AI in detail. 

 
Foundation of AI 

● Philosophy 
●  Mathematics 
● Economics 
● Neuroscienc 
● Psychology 
● Computer engineering 
● Control theory and cybernetics 
● Linguistics 
●  

2. Explain history of AI in detail 
● The gestation of artificial intelligence (1943–1955) 
● The birth of artificial intelligence (1956) 
● Early enthusiasm, great expectations (1952–1969) 
● A dose of reality (1966–1973) 
● Knowledge-based systems: The key to power? (1969–1979) 
● AI becomes an industry (1980–present) 
● The return of neural networks (1986–present) 
● AI adopts the scientific method (1987–present) 



● The emergence of intelligent agents (1995–present) 
● The availability of very large data sets (2001–present) 

 
OR 

 
1. Brieflr explain the properties of task environment. 

 
● Fully observable vs. partially observable 
● Single agent vs. multiagent: 
● Deterministic vs. stochastic 
● Episodic vs. sequential: 
● Static vs. dynamic 
● Discrete vs. continuous: 
●  

2. Explain the following w.r.t. Structure of agents. 
a. Simplex reflex agenents 
b. Model based reflex agents 
c. Utility based agents 

 
The simplest kind of agent is the simple reflex agent. These agents select actions on the basis of 
the current percept, ignoring the rest of the percept history. For example, the vacuum agent 
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision 
is based only on the current location and on whether that location contains dirt. An agent 
program for this agent is shown in Figure 2.8. 
 
Simple reflex behaviors occur even in more complex environments. Imagine yourself 
as the driver of the automated taxi. If the car in front brakes and its brake lights come on, then 
you should notice this and initiate braking. In other words, some processing is done on the 
visual input to establish the condition we call “The car in front is braking.” Then, this triggers 
some established connection in the agent program to the action “initiate braking.” We call 
such a connection a condition–action rule, written as 
 

if car-in-front-is-braking then initiate-braking. 
 
The program in Figure 2.8 is specific to one particular vacuum environment. A more 
general and flexible approach is first to build a general-purpose interpreter for condition– 
action rules and then to create rule sets for specific task environments. Figure 2.9 gives the 
structure of this general program in schematic form, showing how the condition–action rules 
allow the agent to make the connection from percept to action. We use rectangles to denote the 
current internal state of the agent’s decision process, and ovals to represent the background 



information used in the process. The agent program, which is also very simple, is shown in 
Figure 2.10. The INTERPRET-INPUT function generates an abstracted description of the current 
state from the percept, and the RULE-MATCH function returns the first rule in the set of rules 
that matches the given state description. Note that the description in terms of “rules” and 
“matching” is purely conceptual; actual implementations can be as simple as a collection of logic 
gates implementing a Boolean circuit. 
 
 

 
 

 
 
Simple reflex agents have the admirable property of being simple, but they turn out to be 
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be 
made on the basis of only the current percept—that is, only if the environment is fully 
observable. Even a little bit of unobservability can cause serious trouble. For example, the 
braking rule given earlier assumes that the condition car-in-front-is-braking can be determined 
from the current percept—a single frame of video. This works if the car in front has a centrally 
mounted brake light. Unfortunately, older models have different configurations of taillights, 
brake lights, and turn-signal lights, and it is not always possible to tell from a single image 
whether the car is braking. A simple reflex agent driving behind such a car would either brake 
continuously and unnecessarily, or, worse, never brake at all. 
 

A. Model-based reflex agents 



 
The most effective way to handle partial observability is for the agent to keep track of the 
part of the world it can’t see now. That is, the agent should maintain some sort of internal state 
that depends on the percept history and thereby reflects at least some of the unobserved 
aspects of the current state. For the braking problem, the internal state is not too extensive— 
just the previous frame from the camera, allowing the agent to detect when two red lights at 
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing 
lanes, the agent needs to keep track of where the other cars are if it can’t see them all at once. 
And for any driving to be possible at all, the agent needs to keep track of where its keys are. 
 
Updating this internal state information as time goes by requires two kinds of knowledge to be 
encoded in the agent program. First, we need some information about how the world evolves 
independently of the agent—for example, that an overtaking car generally will be closer behind 
than it was a moment ago. Second, we need some information about how the agent’s own actions 
affect the world—for example, that when the agent turns the steering wheel clockwise, the car 
turns to the right, or that after driving for five minutes northbound on the freeway, one is usually 
about five miles north of where one was five minutes ago. This knowledge about “how the world 
works”—whether implemented in simple Boolean circuits or in complete scientific theories—is 
called a model of the world. An agent that uses such a model is called model-based agent. 
 
Figure 2.11 gives the structure of the model-based reflex agent with internal state, show- 
ing how the current percept is combined with the old internal state to generate the updated 
description of the current state, based on the agent’s model of how the world works. The agent 
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which is 
responsible for creating the new internal state description. The details of how models and states 
are represented vary widely depending on the type of environment and the particular technology 
used in the agent design. 
 
 



 
 
 

 
 
Regardless of the kind of representation used, it is seldom possible for the agent to 
determine the current state of a partially observable environment exactly. Instead, the box 
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or 
sometimes best guesses). For example, an automated taxi may not be able to see around the 
large truck that has stopped in front of it and can only guess about what may be causing the 
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has 
to make a decision. 
 
A perhaps less obvious point about the internal “state” maintained by a model-based agent is that 
it does not have to describe “what the world is like now” in a literal sense. For example, the taxi 
may be driving back home, and it may have a rule telling it to fill up with 
gas on the way home unless it has at least half a tank. Although “driving back home” may 
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of 
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly 
the same place at the same time, but intending to reach a different destination. 
 



 
 
Goals alone are not enough to generate high-quality behavior in most environments. For 
example, many action sequences will get the taxi to its destination (thereby achieving the goal) 
but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a crude 
binary distinction between “happy” and “unhappy” states. A more general performance measure 
should allow a comparison of different world states according to exactly how happy they would 
make the agent. Because “happy” does not sound very scientific, economists and computer 
scientists use the term utility instead.6 UTILITY We have already seen that a performance 
measure assigns a score to any given sequence of environment states, so it can easily distinguish 
between more and less desirable ways of UTILITY FUNCTION getting to the taxi’s destination. 
An agent’s utility function is essentially an internalization of the performance measure. If the 
internal utility function and the external performance measure are in agreement, then an agent 
that chooses actions to maximize its utility will be rational according to the external performance 
measure. Let us emphasize again that this is not the only way to be rational—we have already 
seen a rational agent program for the vacuum world (Figure 2.8) that has no idea what its utility 
function is—but, like goal-based agents, a utility-based agent has many advantages in terms of 
flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but a 
utility-based agent can still make rational decisions. First, when there are conflicting goals, only 
some of which can be achieved (for example, speed and safety), the utility function specifies the 
appropriate tradeoff. Second, when there are several goals that the agent can aim for, none of 
which can be achieved with certainty, utility provides a way in which the likelihood of success 
can be weighed against the importance of the goals. Partial observability and stochasticity are 
ubiquitous in the real world, and so, therefore, is decision making under uncertainty. Technically 
speaking, a rational utility-based agent EXPECTED UTILITY chooses the action that maximizes 
the expected utility of the action outcomes—that is, the utility the agent expects to derive, on 
average, given the probabilities and utilities of each outcome. 
 



 
 

Module -2 
 

1. What is decision theory? Describe the decision theoretic agents that selects rational 
actions. 
Decision theory = probability theory + utility theory . 

 
2. What is Bayes rule? Explain with relevant examples. 



 

 

 
 

OR 
 

1. Explain the following with example: 
a. Kolmogorovs axioms 



 
Equations (13.1) and (13.4) are often called Kolmogorov’s axioms in honor of the 
Rus- KOLMOGOROV’S AXIOMS sian mathematician Andrei Kolmogorov, who 
showed how to build up the rest of probability theory from this simple foundation 
and how to handle the difficulties caused by continuous variables.2 While 
Equation (13.2) has a definitional flavor, Equation (13.4) reveals that the axioms 
really do constrain the degrees of belief an agent can have concerning logically 
related propositions. This is analogous to the fact that a logical agent cannot 
simultaneously believe A, B, and ¬(A ∧ B), because there is no possible world in 
which all three are true. With probabilities, however, statements refer not to the 
world directly, but to the agent’s own state of knowledge 

b. Inclusion-Exclusion principle. 

 
This rule is easily remembered by noting that the cases where a holds, together 
with the cases where b holds, certainly cover all the cases where a ∨ b holds; but 
summing the two sets of cases counts their intersection twice, so we need to 
subtract P(a ∧ b). 

c. Probability density function 

 
d. Joint probability distribution 



 
e. Independence 

 

 

 



2. Prove the probabilistic agent can perform better than logical agent by concept of 
wumpus world. 

 

 



 



 

 



 

 
OR 

 
1. Define perceptrons. How the perceptrons are represented?  Explain perceptron 

training rule. 



 

 

 



 

 

 
2. Derive the gradient descent rule. 



 

 



 

 
3. Write the stochastic gradient descent version of the back propagation algorithm for 

FFN continuing 2 layers of sigmoid units. 



4.  
 

OR 
1. What is prototypical genetic algorithm 

 



2. Explain the different operators with relevant bit strings. 

 
3. Illustrate program tree representation in genetic programming. Explain block 

stacking problem. 

 



 

 

 

 



 

 



 
Module 4 

 
1. What is association rule mining? Explain support, confidence and lift. 

 

 



 
2. What is collaborative filtering explain its types. 

 
 
 

OR 
 

1. What is BOW model? What are the three ways to identify the importance of words 
in BOW model? 
Unlike structured data, features (independent variables) are not explicitly available in text 
data. Thus, we need to use a process to extract features from the text data. One way is to 
consider each word as a feature and find a measure to capture whether a word exists or 
does not exist in a sentence. This is called the bag-of-words (BoW) model 
There are three ways to identify the importance of words in a BoW model:  

1. Count Vector Model  
2. Term Frequency Vector Model  
3. Term Frequency-Inverse Document Frequency (TF-IDF) Mode 



2. Explain Naive-Bayes model for sentiment classification. 

 

 
3. Brief stemming and lemmatization process. 

Many words appear in multiple forms. For example, love and loved. The vectorizer treats 
the two words as two separate words and hence creates two separate features. But, if a 
word has similar meaning in all its form, we can use only the root word as a feature. 
Stemming and Lemmatization are two popular techniques that are used to convert the 
words into root words. 1. Stemming: This removes the differences between inflected 
forms of a word to reduce each word to its root form. This is done by mostly chopping 
off the end of words (suffix). For instance, love or loved will be reduced to the root word 
love. The root form of a word may not even be a real word. For example, awesome and 
awesomeness will be stemmed to awesom. One problem with stemming is that chopping 
of words may result in words that are not part of vocabulary (e.g., awesom). 
PorterStemmer and LancasterStemmer are two popular algorithms for stemming, which 
have rules on how to chop off a word. 
2. Lemmatization: This takes the morphological analysis of the words into consideration. 
It uses a language dictionary (i.e., English dictionary) to convert the words to the root 
word. For example, stemming would fail to differentiate between man and men, while 
lemmatization can bring these words to its original form man. 
 



Natural Language Toolkit (NLTK) is a very popular library in Python that has an 
extensive set of features for natural language processing. NLTK supports PorterStemmer, 
EnglishStemmer, and LancasterStemmer for stemming, while WordNetLemmatizer for 
lemmatization. These features can be used in CountVectorizer, while creating count 
vectors. We need to create a utility method, which takes documents, tokenizes it to create 
words, stems the words and remove the stop words before returning the final set of words 
for creating vectors 

 
 

Module 5 
 

1. Define Clusterin. What are different types of clustering? 
Clustering is the process of grouping together data objects into multiple sets or clusters, 
so that objects within a cluster have high similarity as compared to objects outside of it 
Clustering algorithms can be classified into two main subgroups:  
1. Hard clustering: Each data point either belongs to a cluster completely or not. 
2. Soft clustering: Instead of putting each data point into a separate cluster, a probability 
or likelihood of that data point to be in those clusters is assigned.  
Clustering algorithms can also be classified as follows:  



1. Partitioning method.  
2. Hierarchical method.  
3. Density-based method 
4. Grid-based method 

2. Explain k-medoids clustering with relevant example. 
The k-medoids algorithm is a clustering algorithm very similar to the k-means algorithm. 
Both k-means and k-medoids algorithms are partitional and try to minimize the distance 
between points and cluster center. In contrast to the k-means algorithm, k-medoids 
chooses data points as centers and uses Manhattan distance to define the distance 
between cluster centers and data points. This technique clusters the dataset of n objects 
into k clusters, where the number of clusters k is known in prior. It is more robust to noise 
and outliers as compared to k-means because it minimizes a sum of pairwise 
dissimilarities instead of a sum of squared Euclidean distances. A medoid is defined as an 
object of a cluster whose average dissimilarity to all the objects in the cluster is minimal. 
 

 

 



 

 



 
3. Write the k-nearest neighbour using voronoi diagram 

 

 
 

OR 
1. Explain distance weighted nearest neighbour algorithm. 



 

 
2. Derive and explain local weighted local regression. 



 

  



 
3. Briefly explain radial basis function. 

 

 



 

 


