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, compulsorily draw diagonal cross lines on the remaining blank pages.

, appeal to evaluator and /or equations written eg, 42+8

2. Any revealing of identification

Important Note : 1. On completing your answers
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ester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025
Advanced AI and ML

Max. Marks: 100

e: Answer any FIVE full questtons, choosmg ONE full questzon from each module.

. Module-1 -
Define Al. Explain the foundation of Al in detail. - (10 Marks)
Explain history of Al in detail. s : (10 Marks)
: OR
Briefly explain the/properties of task environment.” (10 Marks)

Explain the following with respect to structure af agents:
1) Simple reflex agents
ii) Model based reflex agents

1i1) Utility__baSEd agents ' (10 Marks)
 Module-2 :
What is demsxon theory? Describe the decision theorenc agent that selects rational actions.
(10 Marks)
What is Baye’s rule? Exp_lam with a relevant example. ) (10 Marks)
OR N

Explain the following with examples:
i) Kolmogoroy’s axioms

i) Inclusion — Exclusion principle
iii) Probability density function

1v) Joint Probability dlstnbutlon

V) Independence ' (10 Marks)

Prove that probabilistic agent can perform better than logical agent by concept of wumpus

world ™, 9 (10 Marks)
Module-3

’ :"Deﬁne perceptrons How the perceptrons are represented? Explain perceptron training rule.

: (08 Marks)

Derive the gradlent descent rule. £ . (08 Marks)

Write the stochastic gradient descent version of the BACKPROPAGATION algorithm for

feedforward network containing 2 layers of sigmoid units. (04 Marks)

&) OR

Write the prototypical genetic algorithm. (05 Marks)

Explain the different operators with relevant bit strings. (06 Marks)

[llustrate program: tree representation in genetic programming. Explain block stacking

problem. N (09 Marks)
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Module-4
What is association rule mining? Explain support, confidence and lift.
What is collaborative filtering? Explain the types.

OR

21A171

(10 Marks)
(10 Marks)

What is BOW model? What are the 3 ways to identify the 1mportance of words in BOW

model?
Explain Naive — Baye’s model for sennment classification.
Brief stemming and lemmatization process.

Module-5
Define Clustering. What are the different types of clustering?
Explain k-medoids clustering with relevant example.
Write the k-nearest nelghbor algorithm using voronoidiagram.

OR~ CMRIT LIBRARY
Explain distance welghted Nearest neighbor algorithm. BANGALORE - 560 037
Derive and explam locally weighted Linear Regression.
Briefly explain radial basis funciton.
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(08 Marks)
(08 Marks)
(04 Marks)

(06 Marks)
(08 Marks)
(06 Marks)

(05 Marks)
(10 Marks)
(05 Marks)



Module 1

1. Define Al Explain the foundation of Al in detail.

Thinking Humanly

“The exciting new effort to make comput-
ers think . .. machines with minds, in the
full and literal sense.” (Haugeland, 1985)

“|The automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solv-
ing, learning . .." (Bellman, 1978)

Thinking Rationally

“The study of mental faculties through the
use of computational models.”
(Charniak and McDermott, 1985)

“The study of the computations that make
it possible to perceive, reason, and act.”
(Winston, 1992)

Acting Humanly

“The art of creating machines that per-
form functions that require intelligence
when performed by people.” (Kurzweil,
1990)

“The study of how to make computers do
things at which, at the moment, people are
better.” (Rich and Knight, 1991}

Acting Rationally

“Computational Intelligence is the study
of the design of intelligent agents.” (Poole
el al., 1998)

“Al ...is concerned with intelligent be-
havior in artifacts.” (Nilsson, 1998)

Figure 1.1

Some definitions of artificial intelligence, organized into four categories.

Foundation of Al

Philosophy

Mathematics

Economics

Neuroscienc

Psychology

Computer engineering

Control theory and cybernetics
Linguistics

2. Explain history of Al in detail
The gestation of artificial intelligence (1943—1955)

The birth of artificial intelligence (1956)

Early enthusiasm, great expectations (1952—1969)

A dose of reality (1966—1973)

Knowledge-based systems: The key to power? (1969-1979)

Al becomes an industry (1980—present)

The return of neural networks (1986—present)
Al adopts the scientific method (1987—present)




e The emergence of intelligent agents (1995—present)
e The availability of very large data sets (2001—present)

OR
1. Brieflr explain the properties of task environment.

Fully observable vs. partially observable
Single agent vs. multiagent:
Deterministic vs. stochastic

Episodic vs. sequential:

Static vs. dynamic

Discrete vs. continuous:

[ J
2. Explain the following w.r.t. Structure of agents.
a. Simplex reflex agenents
b. Model based reflex agents
c. Utility based agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis of
the current percept, ignoring the rest of the percept history. For example, the vacuum agent
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision

is based only on the current location and on whether that location contains dirt. An agent
program for this agent is shown in Figure 2.8.

Simple reflex behaviors occur even in more complex environments. Imagine yourself

as the driver of the automated taxi. If the car in front brakes and its brake lights come on, then
you should notice this and initiate braking. In other words, some processing is done on the
visual input to establish the condition we call “The car in front is braking.” Then, this triggers
some established connection in the agent program to the action “initiate braking.” We call
such a connection a condition—action rule, written as

if car-in-front-is-braking then initiate-braking.

The program in Figure 2.8 is specific to one particular vacuum environment. A more

general and flexible approach is first to build a general-purpose interpreter for condition—

action rules and then to create rule sets for specific task environments. Figure 2.9 gives the
structure of this general program in schematic form, showing how the condition—action rules
allow the agent to make the connection from percept to action. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background



information used in the process. The agent program, which is also very simple, is shown in
Figure 2.10. The INTERPRET-INPUT function generates an abstracted description of the current
state from the percept, and the RULE-MATCH function returns the first rule in the set of rules
that matches the given state description. Note that the description in terms of “rules” and
“matching” is purely conceptual; actual implementations can be as simple as a collection of logic
gates implementing a Boolean circuit.
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Figure 2.9 Schematic diagram of a simple reflex agent.

ﬁ

function SIMPLE-REFLEX- AGENT( percep! ) returns an action
persistent: rules, a set of condition—action rules

state «— INTERPRET-INPUT( percept)
rile «— RULE-MATCH( state, rules)
action «— rule ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rle whose condition matches
the current state, as defined by the percept.

Simple reflex agents have the admirable property of being simple, but they turn out to be

of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully
observable. Even a little bit of unobservability can cause serious trouble. For example, the
braking rule given earlier assumes that the condition car-in-front-is-braking can be determined
from the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,
brake lights, and turn-signal lights, and it is not always possible to tell from a single image
whether the car is braking. A simple reflex agent driving behind such a car would either brake
continuously and unnecessarily, or, worse, never brake at all.

A. Model-based reflex agents



The most effective way to handle partial observability is for the agent to keep track of the

part of the world it can’t see now. That is, the agent should maintain some sort of internal state
that depends on the percept history and thereby reflects at least some of the unobserved

aspects of the current state. For the braking problem, the internal state is not too extensive—

just the previous frame from the camera, allowing the agent to detect when two red lights at

the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing
lanes, the agent needs to keep track of where the other cars are if it can’t see them all at once.
And for any driving to be possible at all, the agent needs to keep track of where its keys are.

Updating this internal state information as time goes by requires two kinds of knowledge to be
encoded in the agent program. First, we need some information about how the world evolves
independently of the agent—for example, that an overtaking car generally will be closer behind
than it was a moment ago. Second, we need some information about how the agent’s own actions
affect the world—for example, that when the agent turns the steering wheel clockwise, the car
turns to the right, or that after driving for five minutes northbound on the freeway, one is usually
about five miles north of where one was five minutes ago. This knowledge about “how the world
works”—whether implemented in simple Boolean circuits or in complete scientific theories—is
called a model of the world. An agent that uses such a model is called model-based agent.

Figure 2.11 gives the structure of the model-based reflex agent with internal state, show-

ing how the current percept is combined with the old internal state to generate the updated
description of the current state, based on the agent’s model of how the world works. The agent
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which is
responsible for creating the new internal state description. The details of how models and states
are represented vary widely depending on the type of environment and the particular technology
used in the agent design.
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Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT( percepi) returns an action
persistent: sfafe, the agent’s current conception of the world state
model, a description of how the next state depends on current state and action
rules, a set of condition—action rles
action, the most recent action, initially none

state +— UPDATE-STATE(state, action, percept, model)
rile «— RULE-MATCH(state, rules)
action «— rule ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based agent is that
it does not have to describe “what the world is like now” in a literal sense. For example, the taxi
may be driving back home, and it may have a rule telling it to fill up with

gas on the way home unless it has at least half a tank. Although “driving back home” may

seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of

the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly

the same place at the same time, but intending to reach a different destination.
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Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will {(eventually) lead to the
achievement of its goals.
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Goals alone are not enough to generate high-quality behavior in most environments. For
example, many action sequences will get the taxi to its destination (thereby achieving the goal)
but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a crude
binary distinction between “happy” and “unhappy” states. A more general performance measure
should allow a comparison of different world states according to exactly how happy they would
make the agent. Because “happy” does not sound very scientific, economists and computer
scientists use the term utility instead.6 UTILITY We have already seen that a performance
measure assigns a score to any given sequence of environment states, so it can easily distinguish
between more and less desirable ways of UTILITY FUNCTION getting to the taxi’s destination.
An agent’s utility function is essentially an internalization of the performance measure. If the
internal utility function and the external performance measure are in agreement, then an agent
that chooses actions to maximize its utility will be rational according to the external performance
measure. Let us emphasize again that this is not the only way to be rational—we have already
seen a rational agent program for the vacuum world (Figure 2.8) that has no idea what its utility
function is—but, like goal-based agents, a utility-based agent has many advantages in terms of
flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but a
utility-based agent can still make rational decisions. First, when there are conflicting goals, only
some of which can be achieved (for example, speed and safety), the utility function specifies the
appropriate tradeoff. Second, when there are several goals that the agent can aim for, none of
which can be achieved with certainty, utility provides a way in which the likelihood of success
can be weighed against the importance of the goals. Partial observability and stochasticity are
ubiquitous in the real world, and so, therefore, is decision making under uncertainty. Technically
speaking, a rational utility-based agent EXPECTED UTILITY chooses the action that maximizes
the expected utility of the action outcomes—that is, the utility the agent expects to derive, on
average, given the probabilities and utilities of each outcome.
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Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging

over all possible outcome states, weighted by the probability of the outcome.

Module -2

1. What is decision theory? Describe the decision theoretic agents that selects rational
actions.
Decision theory = probability theory + utility theory .

function DT- AGENT( percept) returns an action
persistent: belicf_stafe, probabilistic beliefs about the current state of the world
action, the agent's action

update belief_state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief_state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 13.1 A decision-theoretic agent that selects rational actions.

2. What is Bayes rule? Explain with relevant examples.



Pla nb) = Pla|b)P(b) and Planb)= P(b|a)P(a) .
Equating the two right-hand sides and dividing by P(a), we get
Pla|b)P(b)

T
This equation is known as Bayes” rule (also Bayes’ law or Bayes' theorem). This simple
equation underlies most modern Al systems for probabilistic inference.

P(b|a) = (13.12)

On the surface, Bayes' rule does not seem very useful. It allows us to compuie the single
term P(b|a) in terms of three terms: P(a|b), P(b), and P(a). That seems like two steps
backwards, but Bayes™ rule is useful in practice because there are many cases where we do
have good probability estimates for these three numbers and need to compute the fourth.
Often, we perceive as evidence the effect of some unknown cause and we would like to
determine that cause. In that case. Bayes' rule becomes
Pleffect | eause) P cause)

Pleffect)
The conditional probability Pleffect | cause ) quantifies the relationship in the causal direc-
tion, whereas P(cause | effect) describes the diagnostic direction. In a task such as medical
diagnosis, we often have conditional probabilities on causal relationships (that is, the doctor
knows P(symptoms | disease)) and want to derive a diagnosis, P(disease | symptoms). For
example, a doctor knows that the disease meningitis causes the patient to have a stiff neck,
say, 70% of the time. The doctor also knows some unconditional facts: the prior probabil-
ity that a patient has meningitis is 1/50,000, and the prior probability that any patient has a
stiff neck is 19%. Letting s be the proposition that the patient has a stiff neck and m be the
proposition that the patient has meningitis, we have

P(cause | effect) =

P(s|m) = 0.7
P(m) = 1/50000
P(s) = 0.01
~ P(s|m)P(m) 0.7 x1/50000
P(m|s) = Pl " = — 0.0014 . (13.14)

That is, we expect less than 1 in 700 patients with a stiff neck to have meningitis. Notice that
even though a stiff neck is quite strongly indicated by meningitis (with probability 0.7), the
probability of meningitis in the patient remains small. This is because the prior probability of
stiff necks is much higher than that of meningitis.

OR

1. Explain the following with example:
a. Kolmogorovs axioms
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0 < P(w) < 1 for every w and ZP{J] =1. (13.1)
well
Plawvhb)=Pla)+ P(b) — PlaMb). (13.4)

Equations (13.1) and (13.4) are often called Kolmogorov’s axioms in honor of the
Rus- KOLMOGOROV’S AXIOMS sian mathematician Andrei Kolmogorov, who
showed how to build up the rest of probability theory from this simple foundation
and how to handle the difficulties caused by continuous variables.2 While
Equation (13.2) has a definitional flavor, Equation (13.4) reveals that the axioms
really do constrain the degrees of belief an agent can have concerning logically
related propositions. This is analogous to the fact that a logical agent cannot
simultaneously believe A, B, and ~(A /\ B), because there is no possible world in
which all three are true. With probabilities, however, statements refer not to the
world directly, but to the agent’s own state of knowledge
b. Inclusion-Exclusion principle.

Plaw b) = Pla) + P(b) — PlaAb). (13.4)

This rule is easily remembered by noting that the cases where a holds, together
with the cases where b holds, certainly cover all the cases where a V' b holds; but
summing the two sets of cases counts their intersection twice, so we need to
subtract P(a /\ b).
¢. Probability density function
Probability density functions (sometimes called pdfs) differ in meaning from discrete
distributions. Saying that the probability density is uniform from 18C to 26 means that
there is a 100% chance that the temperature will fall somewhere in that 8C'-wide region
and a 50% chance that it will fall in any 4C-wide region, and so on. We write the probability
density for a continuous random variable X at value x as P[X = &) or just P{x); the intuitive
definition of F(x) is the probability that X falls within an arbitrarily small region beginning
at x, divided by the width of the region:
Plr)= lim]P{J' < X <a+dr)/dr .

dx—(
For NoonTemp we have

- _ L if18C < x < 260

FP{NoonTemp=ux) = [-';r.'.e_.lru-.r‘m[mf " 260 (x) = { {E;f-l:ither".'.-'ise

where (' stands for centigrade (not for a constant). In P NoonTemp = 20.18C") = # note
that % is not a probability, it is a probability density. The probability that NoonTemp is
exactly 20.18C is zero, because 20018 is a region of width 0. Some authors use different
symbols for discrete distributions and density functions; we use P in both cases, since confu-
sion seldom arises and the equations are usually identical. Note that probabilities are unitless
numbers, whereas density functions are measured with a unit. in this case reciprocal degrees.

d. Joint probability distribution



In addition to distributions on single variables, we need notation for distributions on
multiple variables. Commas are used for this. For example, P| Weather, Cavity) denotes
the probabilities of all combinations of the values of Wealher and Cawvity. This is a 4 = 2
table of probabilities called the joint probability distribution of Weather and Cavity. We
can also mix variables with and without values: P|sunny. Cawvity) would be a two-element
vector giving the probabilities of a sunny day with a cavity and a sunny day with no cavity.
The P notation makes certain expressions much more concise than they might otherwise be,

Independence

Let us expand the full joint distribution in Figure 13.3 by adding a fourth variable, Weather.
The full joint distribution then becomes P{ Toothache, Cateh, Cavity, Weather ), which has
2= 2x 2 x4 = 32 entries. It contains four “editions™ of the table shown in Figure 13.3,
one for each kind of weather. What relationship do these editions have to each other and to
the original three-variable table? For example, how are P(toothache, cateh, eavity ., clowdy)
and P(toothache, cateh, cavity) related? We can use the product rule:

P(toothache, cateh, eavity, eloudy)
= P(eloudy | toothache, eateh, cavity P (toothache , cateh, eavity) .

Now, unless one is in the deity business, one should not imagine that one’s dental problems
influence the weather. And for indoor dentistry, at least, it seems safe to say that the weather
does not influence the dental variables. Therefore, the following assertion seems reasonable:

P(eloudy | toothache, cateh, cavity) = P(cloudy) . (13.10)
From this, we can deduce

P(toothache, cateh, cavity, cloudy) = P(cloudy ) P(toothache, cateh, cavity) .

A similar equation exists for every entry in P Toothache, Cateh, Cavity, Weather). In fact,
we can write the general equation

P{ Toothache. Catch. Cavitu. Weather| = Pl Toothache. Catch. Cavity\P{ Weather) .

Thus, the 32-element table for four variables can be constructed from one 3-element table
and one 4-element table. This decomposition is illustrated schematically in Figure 13 4(a).

The property we used in Equation (13.10) is called independence (also marginal in-
dependence and absolute independence). In particular, the weather is independent of one’s
dental problems. Independence between propositions o and b can be written as

P(a|b)=P(a) or P(bla)=P(b) or P(aAb)=P(a)P(b). (13.11)

All these forms are equivalent (Exercise 13.12). Independence between variables X and Y
can be written as follows (again, these are all equivalent):

P(X|Y)=P(X) or P(Y|X)=P(Y) or P(X.Y)=P(X)P(Y).

Independence assertions are usually based on knowledge of the domain. As the toothache—
weather example illustrates, they can dramatically reduce the amount of information nec-
essary to specify the full joint distribution. If the complete set of variables can be divided

into independent subsets, then the full joint distribution can be factored into separate joint
distributions on those subsets. For example, the full joint distribution on the outcome of n
independent coin flips. P(C., ..., ), has 2" entries, but it can be represented as the prod-
uct of n single-variable distributions P(C;). In a more practical vein, the independence of
dentistry and meteorology is a good thing, because otherwise the practice of dentistry might
require intimate knowledge of meteorology, and vice versa.



2. Prove the probabilistic agent can perform better than logical agent by concept of
wumpus world.

Owr aim is to calculate the probability that each of the three squares contains a pit. (For
this example we ignore the wumpus and the gold.) The relevant properties of the wumpus
world are that (1) a pit causes breezes in all neighboring squares, and (2) each square other
than [1.1] contains a pit with probability (.2, The first step is to identify the set of random
variables we need:

e As in the propositional logic case, we want one Boolean variable F;; for each square,
which is true iff square [¢. j] actually contains a pit.
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Figure 13.5  (a) After finding a breeze in both [1,2] and [2,1], the agent is stuck—there is
no safe place to explore. (b) Division of the squares into Known, Frontier, and (iher, for
aquery about [1,3].

» We also have Boolean variables B;; that are true iff square [¢, j] is breezy:; we include
these variables only for the observed squares—in this case, [1,1], [1.2], and [2,1].

The next step is to specify the full joint distribution, P(Py1,..., Py 4. By 1. B1 2, Ba1). Ap-
plying the product rule, we have



The next step is to specify the full joint distribution, P(Py 1,..., P4, B11. Bi2, Ba1). Ap-
plying the product rule, we have

P(Pi1,....Pi4.B11.B12,B2;) =
P(By1.B12. 821 | Pra,-.., Pia)P(Pyq,. ... FPy,).

This decomposition makes it easy to see what the joint probability values should be. The
first term is the conditional probability distribution of a breeze configuration, given a pit
configuration; its values are 1 if the breezes are adjacent to the pits and 0 otherwise. The
second term is the prior probability of a pit configuration. Each square contains a pit with
probability 0.2, independently of the other squares: hence,

4.4
P(Py,....Pua) = ] P(Py). (13.20)
ij=1,1
For a particular configuration with exactly n pits, P(Py1,.... Pya)=0.2" x 085",

In the sitwation in Figure 13.5(a), the evidence consists of the observed breeze (or its
absence) in each square that is visited, combined with the fact that each such square contains
no pit. We abbreviate these facts as b= <by; 1 Al 2 A b 1 and known = —py 1 A=pr2 A=pa.
We are interested in answering queries such as P( Py 5 | knoun, b): how likely is it that [1,3]
contains a pit, given the observations so far?

To answer this query, we can follow the standard approach of Equation (13.9), namely,
summing over entries from the full joint distribution. Let Unknoun be the set of F; ; vari-



ables for squares other than the Knoumn squares and the query square [1,3]. Then, by Equa-
tion (13.9), we have
P(Py3|known,b) = Y P(Py3, unknown, known,b) .

unknoum

The full joint probabilities have already been specified, so we are done—that is, unless we
care about computation. There are 12 unknown squares; hence the summation contains
212 — 4096 terms. In general, the summation grows exponentially with the number of squares.

Surely, one might ask, aren’t the other squares irrelevant? How could [4.4] affect
whether [1,3] has a pit? Indeed, this intuition is correct. Let Frontier be the pit variables
{other than the query variable) that are adjacent to visited squares, in this case just [2.2] and
[3,1]. Also, let Other be the pit variables for the other unknown squares; in this case, there are
10 other squares, as shown in Figure 13.5(b). The key insight is that the observed breezes are
conditionally independent of the other variables, given the known, frontier, and query vari-
ables. To use the insight, we manipulate the query formula into a form in which the breezes
are conditioned on all the other variables, and then we apply conditional independence:

P( P, 3 | known, b)
= a Y P(Pi3 known,b unknown)  (by Equation (13.9))

unknown

= Z P(b| P, 3, known, unknown)P( P, 5, known, unknoun)
unkiown

by the product rule)

= a Y Y P(b|knoun, Py, frontier, other )P(Py g, known, frontier, other)
frontier ather
= ¢ Z Z P(b| known, P 5. frontier )P(P) 5, known, frontier, other)
frontier ather
where the final step uses conditional independence: b is independent of other given known,

P g, and fromiier. Now, the first term in this expression does not depend on the Ofher
vatiables, so we can move the summation inward:

P( P, 4 | known, b)
= ¢ Z P(b| known, P, 5, frontier) Z P( P, 3, knouwn, frontier, other) .

frontier other
By independence, as in Equation (13.20), the prior term can be factored, and then the terms
can be reordered:

P( P 3 | known, b)

= a Y P(b| known, Py 3, frontier) Y _ P(Py3)P(known)P(frontier)P(other)
frontier other

= a P(known)P(P13) Y P(b| known, Py 3, frontier) P(frontier) »  P(other)

frontier other

= o'P(Pi3) Y P(b|known, Py, frontier) P(frontier) ,

frontier



® ® ® -
E 5‘ [ 7‘ E R [ i E
oK oK Ok oK 0K

1.1 2.1B 1.1 E.IB 11 E.IB 1.1 2.15 t 1.1 215
OK [ 0K OK [ OK OK | OK Ok | OK Ok | OK

02x02=004 N2x0E=0.16 DEx02=0.16 02x02=004 02x08=10.16
(a) ]

Figure 13.6 Consistent models for the frontier variables o and F; ;. showing
P(frontier) for each model: (a) three models with P 5 = true showing two or three pits,
and (b} two models with P ; = false showing one or two pits.

where the last step folds P(known) into the normalizing constant and uses the fact that
3 other Plother) equals 1.

MNow, there are just four terms in the summation over the frontier variables 5 and
P4 1. The use of independence and conditional independence has completely eliminated the
other squares from consideration.

Notice that the expression P(b| known, Py 3, frontier) is 1 when the frontier is consis-
tent with the breeze observations, and 0 otherwise. Thus, for each value of P} 5, we sum over
the logical models for the frontier variables that are consistent with the known facts. (Com-
pare with the enumeration over models in Figure 7.5 on page 241.) The models and their
associated prior probabilities— P( frontier }—are shown in Figure 13.6. We have

P(Py3 | known.b) = o' (0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)) == (0.31,0.69) .

P(Py 3| known,b) = o' (0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)) = (0.31,0.69) .

That is, [1,3] {and [3,1] by symmetry) contains a pit with roughly 31% probability. A similar
calculation, which the reader might wish to perform, shows that [2,2] contains a pit with
roughly B6% probability. The wumpus agent should definitely avoid [2,2]! Note that our
logical agent from Chapter 7 did not know that [2,2] was worse than the other squares. Logic
can tell us that it is unknown whether there is a pit in [2, 2], but we need probability to tell us
how likely it is.

What this section has shown is that even seemingly complicated problems can be for-
mulated precisely in probability theory and solved with simple algorithms. To get efficient
solutions, independence and conditional independence relationships can be used to simplify
the summations required. These relationships often correspond to our natural understanding
of how the problem should be decomposed. In the next chapter, we develop formal represen-
tations for such relationships as well as algorithms that operate on those representations to
perform probabilistic inference efficiently.

OR

1. Define perceptrons. How the perceptrons are represented? Explain perceptron
training rule.



One type of ANN system is based on a unit called a perceptron, illustrated in
Figure 4.2. A perceptron takes a vector of real-valued inputs, calculates a linear
combination of these inputs, then outputs a 1 if the result is greater than some
threshold and —1 otherwise. More precisely, given inputs x; through x;, the output
oxi, ..., X,) computed by the percepiron is

1if wo +wpxy +wrxz 4+ wpx, = 0
X, e Xp) = _1 otherwise
We can view the perceptron as representing a hyperplane decision surface in the
n-dimensional space of instances (i.e., points). The perceptron outputs a 1 for
instances lying on one side of the hyperplane and outputs a —1 for instances
lying on the other side, as illustrated in Figure 4.3, The equation for this decision
hyperplane is i - ¥ = 0. Of course, some sets of positive and negative examples
cannot be separated by any hyperplane, Those that can be separated are called
linearly separable sets of examples.

FIGURE 4.2
A perceplrodqn.

A single perceptron can be used to represent many boolean functions. For
example, if we assume boolean values of 1 (true) and —1 (false), then one way to
use a two-input perceptron to implement the AND function is to set the weights
iy = —.8, and uy = w2 = .5. This perceptron can be made to represent the OR
function instead by altering the threshold to wy = —.3. In fact, AND and OR. can
be viewed as special cases of m-of-n functions: that is, functions where at least
m of the n inputs to the perceptron must be true. The OR function corresponds to
m = | and the AND function to m = n. Any m-of-n function is easily represented
using a perceptron by setting all input weights to the same value (e.g., 0.5) and
then setting the threshold wy accordingly.



Although we are interested in leaming networks of many interconnected units, let
us begin by understanding how to learn the weights for a single perceptron. Here
the precise learning problem is to determine a weight vector that causes the per-
ceptron to produce the correct +1 output for each of the given training examples.

Several algorithms are known to solve this learning problem. Here we con-
sider two: the perceptron rule and the delta rule (a variant of the LMS rule used
in Chapter 1 for learning evaluation functions). These two algorithms are guaran-
teed to converge to somewhat different acceptable hypotheses, onder somewhat
different conditions. They are important to ANNs because they provide the basis
for learning networks of many units.

One way to learn an acceptable weight vector is to begin with random
weights, then iteratively apply the perceptron to each training example, modify-
ing the perceptron weights whenever it misclassifies an example. This process is
repeated, iterating through the training examples as many times as needed until
the perceptron classifies all training examples correctly. Weights are modified at
each step according to the perceptron training rule, which revises the weight w;
associated with input x; according to the rule

wy — uwy + Awy
where
Ay = it — a)x;

Here r is the target output for the current training example, o is the output generated
by the perceptron, and 5 is a positive constant called the learning rare. The role
of the learming rate is to moderate the degree to which weights are changed at
each step. It is usually set to some small value (e.g., 0.1) and is sometimes made
to decay as the number of weight-tuning iterations increases.

Why should this update rule converge toward successful weight values? To
get an intuitive feel, consider some specific cases. Suppose the training example is
correctly classified already by the perceptron. In this case, (t — o) is zero, making
Awy; zero, so that no weights are updated. Suppose the perceptron outputs a —1,
when the target output is +1. To make the perceptron output a +1 instead of —1 in
this case, the weights must be altered to increase the value of w-%. For example, if
x; = (), then increasing w; will bring the perceptron closer to correctly classifying

this example. Notice the training rule will increase wy; in this case, because (¥ — o),
i, and x; are all positive. For example, if x;, = 8, n=0.1,r = 1, and 0 = —1,
then the weight update will be Aw; = pir — o)x; = 0.1{1 — (=1})0.8 = 0.16. On
the other hand, if t = —1 and o = 1, then weights associated with positive x; will
be decreased rather than increased.

In fact, the above learning procedure can be proven to converge within a
finite number of applications of the perceptron training rule to a weight vec-
tor that correctly classifies all training examples, provided the training examples
are linearly separable and provided a sufficiently small n is used (see Minsky
and Papert 1969). If the data are not linearly separable, convergence is not as-
sured.

2. Derive the gradient descent rule.



How can we calculate the direction of steepest descent along the error surface?
This direction can be found by computing the derivative of E with respect to each
component of the vector w. This vector derivative is called the gradient of E with
respect to w, written VE(w).

dE dE dE
Ean = | 25 98 9& 4.3
VE(w) [ku.'awf 1311&} @3

Notice V E(w) is itself a vector, whose components are the partial derivatives
of E with respect to each of the wy,. When interpreted as a vector in weight
space, the gradient specifies the direction that produces the steepest increase in
E. The negative of this vector therefore gives the direction of steepest decrease.
For example, the arrow in Figure 4.4 shows the negated gradient —VE(w) for a
particular point in the wy, wy plane.

Since the gradient specifies the direction of steepest increase of E, the train-
ing rule for gradient descent is

W w4 Aw

‘T

where

Al = —nVE(u) (4.4)

Here » is a positive constant called the learning rate, which determines the step
size in the gradient descent search. The negative sign is present because we want
to move the weight vector in the direction that decreases E. This training rule
can also be written in its component form

w; — w; + Ay
where

dE

o (4.5)

Auy = —n

which makes it clear that steepest descent is achieved by altering each component
w; of 1 in proportion to 2.

To construct a practical algorithm for iteratively updating weights according
o Equation (4.5), we need an efficient way of calculating the gradient at each
step. Fortunately, this is not difficult. The vector of J derivatives that form the



gradient can be obtained by differentiating E from Equation (4.2), as

dE a1 q
—_— = —— ty —a
duy ﬂw;l‘;(d a)

1 a
= - —(tq — 0a)*
2 a'EZ.EI 3“1‘.'

1 d
E Z 20ty — ﬂg}mﬂa — a4}

del

] - -
N s — o)ty — - %)

deD dw;
dE
Fonie E(l:: — e ) —xig4) (4.6)
! del

where x;; denotes the single input component x; for training example 4. We now
have an equation that gives % in terms of the linear unit inputs x4, outputs
Oy, and target values ¢y associated with the training examples. Substituting Equa-
tion (4.6) into Equation (4.5) yields the weight update rule for gradient descent

Awj =1 ) (ta = 04) Xig (4.7)
dely

Aw; =71 ) (ta = 0g) Xig (4.7)
de D

To summarize, the gradient descent algorithm for training linear units is as
follows: Pick an initial random weight vector. Apply the linear unit to all training
examples, then compute Aw; for each weight according to Equation (4.7). Update
each weight w; by adding Aw;, then repeat this process. This algorithm is given
in Table 4.1. Because the error surface contains only a single global minimum,
this algorithm will converge to a weight vector with minimum error, regardless
of whether the training examples are linearly separable, given a sufficiently small
leamning rate 5 is used. If » is too large, the gradient descent search runs the risk
of overstepping the minimum in the error surface rather than settling into it. For
this reason, one common modification to the algorithm is to gradually reduce the
value of n as the number of gradient descent steps grows.

3. Write the stochastic gradient descent version of the back propagation algorithm for
FFN continuing 2 layers of sigmoid units.



1.

BACKPROPAGATION(Iraining examples, 1. M . Moy Fhidden)

Each training example is a pair of the form (3,7}, where 3 is the vector of network input
values, and i is the vector of target network oufput values,
i b5 the learning rate {e.g., 035 ny, is the number of network inpuls, rygaen the number af
unifs in the hidden layer, and fo,. the number of output wnits.
The input from wnit § info wnit § is demoted xy, and the weight from unit @ to wnit § is denoted
Wyj-
o Create a feed-forward network with mge inputs, fpigde hidden units, and nz; output units.
o Initialize all network weights to small random numbers (e.g., between — 05 and .05),
= Until the termination condition is met, Do
» For each (%,7 ) in training_examples, Do

FPropagate the input forward through the network:

1. Inpui the instance T to the network and compute the output o, of évery umit o in
the network.

Propagate the errors backward through the network:
2. For each network cutput unit k, calculate its error term &

By ol — op Wt — ox) (T4.3)
3, For each hidden unit &, calculate ils error term 3
ol —o) Y by | (T4d)
IEoul puts

4. Update each network weight wy,
W Wiy + Aw;l

where
Mgy = n b Ty (T4.5)

OR
What is prototypical genetic algorithm

GA(Fitness, Fitness shreshold, p.r.m)
Fimess: A function that assigns an evaluarion score, given a hypothesis.
Fitness threshold: A threshold specifying the fermination criterion.
p: The number of hypotheseés to be included in the papulation.
r: The fraction of the population to be replaced by Crossover af each step.
m: The mutation rate.

» Imitialize population: P+ Generate p hypotheses at random

» Evaluate: For each b in P, compute Fitnessih)

« While [m::. Fiinessih)] = Firness threshold do

Create a new generation, Fg:
1. Select: Probabilistically select (1 — r)p members of P to add w Py. The probability Prih,) of
selecting hypothesis by from P is given by
Fitness(hy)
Ej‘;! Fitness(h;)

2. Crossover: Probabilistically select 58 pairs of hypotheses from P, according to Prik;) given
above. For each pair, {#), k), produce two offspring by applying the Crossover aperator,
Add ﬂ-“ ﬂﬁ-spl'i.ﬂa [ {4] F!.

3. Mutate; Choose m percent of the members of P, with uniform probability. For each, invert
one randomly selected bit in its representation.

4. Updare: P +~ F;.

5, Evaluare; for each b in P, compute Fitness(h)

= Return the hypothesis from P that has the highest fitness.

Prik) =



2. Explain the different operators with relevant bit strings.

Initial strings Crossover Mask Cffsprril

Single-point crossover:
11101001000 11100

: 11111000000 :
00001010101 ) 00001001000

Twao-point crossover:

11101001000 11001011000

:: 00111110000 :
00001010101 00101000101

Uiniform crossover:

il
11101001000 10011010011 10001000100
00001018101 : : 01101011001

Point mutation: 11101001000 - 11101011000

3. Illustrate program tree representation in genetic programming. Explain block
stacking problem.

Programs manipulated by a GP are typically represented by trees comrespond-
ing to the parse tree of the program. Each function call is represented by a
node in the tree, and the arguments to the function are given by its descendant
nodes. For example, Figure 9.1 illustrates this tree representation for the function
sin(x) + /x2 + y. To apply genetic programming to a particular domain, the user
must define the primitive functions to be considered (e.g., sin, cos, oo exs
ponentials), as well as the terminals (e.g., x, v, constants such as 2). The genetic
programming algorithm then uses an evolutionary search to explore the vast space
of programs that can be described using these primitives.

As in a genetic algorithm, the prototypical genetic programming algorithm
maintains a population of individuals (in this case, program trees). On each it-
eration, it produces a new generation of individuals using selection, crossover,
and mutation. The fitness of a given individual program in the population is typ-
ically determined by executing the program on a set of training data. Crossover
operations are performed by replacing a randomly chosen subtree of one parent
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One illustrative example presented by Koza (1992) involves learning an algorithm
for stacking the blocks shown in Figure 9.3. The task is to develop a general algo-
rithm for stacking the blocks into a single stack that spells the word “universal,”

v] Ju] 1] fa] i]



independent of the initial configuration of blocks in the world. The actions avail-
able for manipulating blocks allow moving only a single block at a time. In
particular, the top block on the stack can be moved to the table surface, or a
block on the table surface can be moved to the top of the stack.

As in most GP applications, the choice of problem representation has a
significant impact on the ease of solving the problem. In Koza's formulation, the
primitive functions vsed to compose programs for this task include the following
three terminal arguments:

» 5 (current stack), which refers to the name of the top block on the stack,
or F if there is no current stack.

s TB (top correct block), which refers to the name of the topmost block on
the stack, such that it and those blocks beneath it are in the correct order,

» NN (next necessary), which refers to the name of the next block needed
above TB in the stack, in order to spell the word “universal,” or F if no
maore blocks are needed.

As can be seen, this particular choice of terminal arguments provides a natu-
ral representation for describing programs for manipulating blocks for this task.
Imagine, in contrast, the relative difficulty of the task if we were to instead define
the terminal arguments to be the x and y coordinates of each block.

In addition to these terminal arguments, the program language in this appli-
cation included the following primitive functions:

o (MS x) (move to stack), if block x is on the table, this operator moves x to
the top of the stack and returns the value T. Otherwise, it does nothing and
refurns the valoe F.

# (MT x) (move to table), if block x is somewhere in the stack, this moves the
block at the top of the stack to the table and returns the value T. Otherwise,
it returns the value F.

« (EQ x ) (equal), which returns T if x equals y, and returns F otherwise.

e (NOT x), which returns T if x = F, and retumns F if x = T.



s (DU x ¥) (do until), which executes the expression x repeatedly until ex-
pression y returns the value T,

To allow the system to evaluate the fitness of any given program, Koza
provided a set of 166 training example problems representing a broad variety of
initial block configurations, including problems of differing degrees of difficulty.
The fitness of any given program was taken to be the number of these examples
solved by the algorithm. The population was initialized to a set of 300 random
programs. After 10 generations, the system discovered the following program,
which solves all 166 problems.

(EQ (DU (MT CS)NOT C5)) (DU (MS NN)NOT NN)) )

Notice this program contains a sequence of two DU, or “Do Until” state-
ments. The first repeatedly moves the current top of the stack onto the table, until
the stack becomes empty. The second “Do Until” statement then repeatedly moves
the next necessary block from the table onto the stack. The role playved by the
top level EQ) expression here is to provide a syntactically legal way to sequence
these two “Do Until” loops.

Somewhat surprisingly, after only a few generations, this GP was able to
discover a program that solves all 166 training problems. Of course the ability
of the system to accomplish this depends strongly on the primitive arguments
and functions provided, and on the set of training example cases used to evaluate
fitness.

Module 4

1. What is association rule mining? Explain support, confidence and lift.

Association rule finds combinations of items that frequently occur together in orders or baskets
{in a retail context). The items that frequently occur together are called itemsets. Itemsets help to
discover relationships between items that people buy together and use that as a basis for creating
strategies like combining products as combo offer or place products next to each other in retail
shelves to attract customer attention. An application of association rule mining is in Market Basket
Analysis (MBA). MBA is a technique used mostly by retailers to find associations between items
purchased by customers.

2 2.1.1 Support

Support indicates the frequencies of items appearing together in baskets with respect to all possible

baskets being considered (or in a sample). For example, the support for (beer, diaper) will be 2/4 (based

on the data shown in Figure 9.1}, that is, 50% as it appears together in 2 baskets out of 4 baskets.
Assume that X and Y are items being considered. Let

N be the total number of baskets.

N, represent the number of baskets in which X and Y appear together.
N, represent the number of baskets in which X appears.

N, represent the number of baskets in which ¥ appears.

B

Then the support between X and ¥, Support(X, Y), is given by

- j"‘TA)

Support(X, ¥) =T (9.1)
To filter out stronger associations, we can set a minimum support (for example, minimum support of 0.01).
This means the itemset must be present in at least 1% of baskets. Apriori algorithm uses minimum sup-
port criteria to reduce the number of possible itemset combinations, which in turn reduces computa-
tional requirements.

If minimum support is set at 0.01, an association between X and Y will be considered if and only if
both X and ¥ have minimum support of 0.01. Hence, apriori algorithm computes support for each item
independently and eliminates items with support less than minimum support. The support of each indi-
vidual itern can be calculated using Eq. (9.1).



9.2 1.2 Confidence

Confidence measures the proportion of the transactions that contain X, which also contain V. X is called
antecedent and Y is called consequent. Confidence can be calculated using the following formula:

N
Confidence(X = Y)=P(Y |X)= N‘“ (9.2)

X
where P(Y]X) is the conditional probability of ¥ given X.

9213 Lift

Lift is calculated using the following formula:

Lift = Support{X,Y) ~ Ny
Support(X) x Support(Y) NN,

(9.3)

Lift can be interpreted as the degree of association between two items. Lift value 1 indicates that the
items are independent (no association), lift value of less than | implies that the products are substitution
(purchase one product will decrease the probability of purchase of the other product) and lift value of
greater than 1 indicates purchase of Product X will increase the probability of purchase of Product Y.
Lift value of greater than 1 is a necessary condition of generating association rules.

2. What is collaborative filtering explain its types.

Collaborative filtering comes in two variations:

1. User-Based Similarity: Finds K similar users based on common items they have bought.
2. Ttem-Based Similarity: Finds K similar items based on common users who have bought those items.

Collaborative filtering is based on the notion of similarity (or distance). For example, if two users A and
B have purchased the same products and have rated them similarly on a common rating scale, then
A and B can be considered similar in their buying and preference behavior. Hence, if A buys a new prod-
uct and rates high, then that product can be recommended to B. Alternatively, the products that A has
already bought and rated high can be recommended to B, if not already bought by B.

OR

1. What is BOW model? What are the three ways to identify the importance of words

in BOW model?
Unlike structured data, features (independent variables) are not explicitly available in text
data. Thus, we need to use a process to extract features from the text data. One way is to
consider each word as a feature and find a measure to capture whether a word exists or
does not exist in a sentence. This is called the bag-of-words (BoW) model
There are three ways to identify the importance of words in a BoW model:

1. Count Vector Model

2. Term Frequency Vector Model

3. Term Frequency-Inverse Document Frequency (TF-IDF) Mode



2. Explain Naive-Bayes model for sentiment classification.

Assume that we would like to predict whether the probability of a document is positive (or negative)
given that the document contains a word awesome. This can be computed if the probability of the word
awesome appearing in a document given that it is a positive (or negative) sentiment multiplied by the
probability of the document being positive (or negative).

P{doc = +ve | word = awesome) == Plword = awesome | doc = +ve) * Pldoc = +ve)

The posterior probability of the sentiment is computed from the prior probabilities of all the words it
contains. The assumption is that the occurrences of the words in a document are considered indepen-
dent and they do not influence each other. So, if the document contains N words and words are repre-
sented as W, W, ..., W, then

P{doc = +ve |word = W, W,, ... W) x| |? P word =W,

doc = +ve) * Pldoc = +ve)

sklearn.naive_bayes provides a class BernoulliNB which is a Naive-Bayes classifier for multivariate
Bernoulli models. BernoulliNB is designed for Binary/Boolean features (feature is either present or
absent), which is the case here.

The steps involved in using Naive-Bayes Model for sentiment classification are as follows:

1. Split dataset into train and validation sets.
2. Build the Naive-Bayes model.
3. Find model accuracy.

from sklearn.naive bayes import BernoulliNB

nb clf = BernoulliNE ()
nb clf.fit (train X.toarray(), train y)

3. Brief stemming and lemmatization process.

Many words appear in multiple forms. For example, love and loved. The vectorizer treats
the two words as two separate words and hence creates two separate features. But, if a
word has similar meaning in all its form, we can use only the root word as a feature.
Stemming and Lemmatization are two popular techniques that are used to convert the
words into root words. 1. Stemming: This removes the differences between inflected
forms of a word to reduce each word to its root form. This is done by mostly chopping
off the end of words (suffix). For instance, love or loved will be reduced to the root word
love. The root form of a word may not even be a real word. For example, awesome and
awesomeness will be stemmed to awesom. One problem with stemming is that chopping
of words may result in words that are not part of vocabulary (e.g., awesom).
PorterStemmer and LancasterStemmer are two popular algorithms for stemming, which
have rules on how to chop off a word.

2. Lemmatization: This takes the morphological analysis of the words into consideration.
It uses a language dictionary (i.e., English dictionary) to convert the words to the root
word. For example, stemming would fail to differentiate between man and men, while
lemmatization can bring these words to its original form man.



Natural Language Toolkit (NLTK) is a very popular library in Python that has an
extensive set of features for natural language processing. NLTK supports PorterStemmer,
EnglishStemmer, and LancasterStemmer for stemming, while WordNetLemmatizer for
lemmatization. These features can be used in CountVectorizer, while creating count
vectors. We need to create a utility method, which takes documents, tokenizes it to create
words, stems the words and remove the stop words before returning the final set of words
for creating vectors

from nltk.stem.snowball import PorterStemmer
stemmer = PorterStemmer ()

analyzer = CountVectorizer().build analyzer ()
#Custom function for stemming and stop word removal

def stemmed words(doc):

### Stemming of words

stemmed words = [stemmer.stem(w) for w in analyzer (doc) ]
##4# Remove the words in stop words list
non stop words = [word for word in stemmed words if not in my

stop words]
return non stop words

CountVectorizer takes a custom analyzer for stemming and stop word removal, before creating count
vectors. So, the custom function stemmed_words() is passed as an analyzer.

count wectorizer = CountVectorizer(analyzer=stemmed words,

max features = 1000)
feature vector = count_vecturize:.ﬁt{t;ain_ds.text]
train ds features = count wectorizer.transform(train ds.text)
features = feature wvector.get feature names()
features counts = Ep.sum{traiﬁ_ds_feazures.toar:ay[}, axis = 0)
feature counts = pd.DataFrame (dict(features = features,

counts = features counts))
feature counts.sort wvalues (“counts”, ascending = Falgéj:ﬂ:liz

Module 5

1. Define Clusterin. What are different types of clustering?
Clustering is the process of grouping together data objects into multiple sets or clusters,
so that objects within a cluster have high similarity as compared to objects outside of it
Clustering algorithms can be classified into two main subgroups:
1. Hard clustering: Each data point either belongs to a cluster completely or not.
2. Soft clustering: Instead of putting each data point into a separate cluster, a probability
or likelihood of that data point to be in those clusters is assigned.
Clustering algorithms can also be classified as follows:



1. Partitioning method.

2. Hierarchical method.

3. Density-based method

4. Grid-based method

Explain k-medoids clustering with relevant example.

The k-medoids algorithm is a clustering algorithm very similar to the k-means algorithm.
Both k-means and k-medoids algorithms are partitional and try to minimize the distance
between points and cluster center. In contrast to the k-means algorithm, k-medoids
chooses data points as centers and uses Manhattan distance to define the distance
between cluster centers and data points. This technique clusters the dataset of n objects
into k clusters, where the number of clusters k is known in prior. It is more robust to noise
and outliers as compared to k-means because it minimizes a sum of pairwise
dissimilarities instead of a sum of squared Euclidean distances. A medoid is defined as an
object of a cluster whose average dissimilarity to all the objects in the cluster is minimal.

The Manhartan distance berween two vectors in an a-dimensional real vecror space is given by
Eq. (13.2). It is used in compuring rhe distance berween a dara poinr and irs cluster center.

d,(p.q9)=lp-4al, =2 |r. -4/ (13.2)

sl

The most common algorithm in k-medoid clustering is Partitioning Around Medoids (PAM) algorithm.
PAM uses a greedy search which is faster than the exhausrive search and may nor find rthe optimum solurion.
It works as follows:

1. Inirialize: select & of the » dara points as the medoids.

2. Associate each dara point to the closest medoid.

3. While the cost of the configurarion decreases: For each medoid m and for each non-medoid dara point a:
* Swap m and o, recompure the cost (sum of distances of points ro their medoid).
* If the rotal cost of the configurarion increased in the previous step, undo the swap.

Cluster the following dataset of 6 objects into two clusters, thar is, £=2.

X1 2 &
x2 3 i
X3 3 8
X4 4 2
L & 2

(=28

X606




Solution:

Step 1: Two observations cl = X2 = (3, 4) and c2 = X6 = (6, 4) are randomly selecred as medoids (cluster
CEenrers).
Step 2: Manhartan distances are calculated ro each center to associare each dara object to its nearest medoid.

Data Object Distance To
Sample  Point d=(34) 2=(64)
X1 (2, 6) 3 G
X2 (3, 4) 0 3
X3 (3, 8) 4 7
X4 (4, 2) 3 4
X5 (6, 2) 5 2
X6 (6, 4) 3 0
Cost 10 2

Step 3: We select one of the non-medoids O, Ler us assume O = (6, 2). So now the medoids are c1(3, 4)
and (G, 2). If ¢l and O are the new medoids. We calculare the roral cost involved.

Data Object Distance To
Sample Point  ¢l=(3,4) 2=(6 2)
X1 (2, 6) 3 8
Al (3, 4) 0 5
X3 i3 8) 4 9
X4 (4, 2) 3 2
x5 (6, 2) 5 ]
X6 (6, 4) 3 2
Cost 7 4

S0 cost of swapping medoid from ¢2 o " is 11. Since the cost is less, this is considered as a berter cluster
assignment. Here swapping is done as the cost is less.



Step 4: We select another non-medoid (0. Ler us assume (" = (4, 2). So now the medoids are c1(3, 4)
and (4, 2). If ¢1 and O are new medoids, we calculate the total cost involved.

Data Object Distance To
Sdﬂpfs Podnt £l = (3, 4) c2 = (4, 2)

X1 (2, 6) 3 &
X2 (3,4 0 3
X3 (3.8 4 7
X4 4,2) 3 0
x5 i6, 2) 5 2
X6 (6, 4) 3 4
Cost 7 8

S0 cost of swapping medoid from 2 1o O is 15. Since the cost is more, this cluster assignment is not
considered and the swapping is not done.

Thus, we try other non-medoids points to ger minimum cost. The assignment with minimum cost
is considered the best. For some applications, £medoids show berter results than A-means. The most
time-consuming part of the A-medoids algorithm is the calculation of the distances berween objects. The
distances matrix can be compurted in advance to speed-up the process.

3. Write the k-nearest neighbour using voronoi diagram

Training algorithm;
& For each training example {x, f(x)}, add the example o the list training_examples
Classification algorithm:
« Given a query instance x; 1o be classified,
& Let x; . ..x; denote the k instances from fraiming examples that are nearest to
« Return

k
Fixg) « argmax Y " atv, £x)

eV iml

where 8(a. b) = 1 if @ = b and where 8(a, b) = 0 otherwise,

OR
1. Explain distance weighted nearest neighbour algorithm.



One obvious refinement to the k-NearesT NEiGusor algorithm is to weight the con-
tribution of each of the k neighbors according to their distance to the guery point
¥y, giving greater weight to closer neighbors. For example, in the algorithm of
Table 8.1, which approximates discrete-valued target functions, we might weight
the vote of each neighbor according to the inverse square of its distance from x,.

This can be accomplished by replacing the final line of the algorithm by

k
f(x,;.} — argn;axz widlv, fix)) (8.2)
Ve =l

where
_ 1
T d(xg, x)?
To accommodate the case where the query point x, exactly matches one of the
training instances x; and the denominator d{xg, x;)* is therefore zero, we assign
f {xy) to be f(x;) in this case. If there are several such training examples, we
assign the majority classification among them.

We can distance-weight the instances for real-valued target functions in a
similar fashion, replacing the final line of the algorithm in this case by

Yo wifx)
Ef: 1 w;
where wy; is as defined in Equation (8.3). Mote the denominator in Equation (8.4} is
a constant that normalizes the contributions of the various weights (e.g., It assures

that if f(x;) = ¢ for all training examples, then f(x;) + c as well).

Note all of the above variants of the k-NEAresT NEIGHEOR algorithm consider
only the k nearest neighbors to classify the query point. Once we add distance
weighting, there is really no harm in allowing all training examples to have an
influence on the classification of the x,, because very distant examples will have
very little effect on f (x4). The only disadvantage of considering all examples is
that our classifier will run more slowly. If all training examples are considered
when classifying a new query instance, we call the algorithm a global method.
If only the nearest training examples are considered, we call it a local method.
When the rule in Equation (8.4} is applied as a global method, using all training
examples, it is known as Shepard’s method (Shepard 1968).

2. Derive and explain local weighted local regression.

ury (8.3)

flag) (8.4)



Let us consider the case of locally weighted regression in which the target function

f is approximated near x, using a linear function of the form

Fx) = wo 4 wiar(x) + - - + wean(x)

As before, a;(x) denotes the value of the ith attribute of the instance x.

Recall that in Chapter 4 we discussed methods such as gradient descent to
find the coefficients wg...w, to minimize the error in fitting such linear func-
tions to a given set of training examples. In that chapter we were interested in
a global approximation to the target function. Therefore, we derived methods to
choose weights that minimize the squared error summed over the set D of training
examples

1 8
=3 ;(f(x:- - fln? (8.5)
which led us to the gradient descent training rule
Awy =1y (f(x) = fx)a;x) (8.6)
xel

where 5 is a constant learning rate, and where the training rule has been re-
E_‘:,‘.(p]'ﬂsﬂs.ﬂd from the notation of Chapter 4 to fit our current notation (i.e., r = f{x),
o~ f(x), and x; — a;(x)).

How shall we modify this procedure to derive a local approximation rather
than a global one? The simple way is to redefine the error criterion E to emphasize
fitting the local training examples. Three possible criteria are given below. Note
we write the error E{x,) to emphasize the fact that now the error is being defined
as a function of the query point x,.

1. Minimize the squared error over just the k nearest neighbors:

1 A
Ei(x,) = 3 3 (f (x) = fx))?
xe k mpearest nbrs of xg
2. Minimize the squared error over the entire set D of training examples, while
weighting the error of each training example by some decreasing function
K of its distance from x,:

Exlxg) = é Y () = F K(dlxg, x))

xel

3, Combine 1 and 2:

Bep=5 Y (@~ fe)? K

x€ k nearest nbrs nf k)

Criterion two is perhaps the most esthetically pleasing because it allows
every training example to have an impact on the classification of x,. However,



this approach requires computation that grows linearly with the number of training
examples. Criterion three is a good approximation to criterion two and has the
advantage that computational cost is independent of the total number of training
examples; its cost depends only on the number k of neighbors considered.

If we choose criterion three above and rederive the gradient descent rule
using the same style of argument as in Chapter 4, we obtain the following training
rule (see Exercise 8.1):

Aw; =7 >, K(d(xg, x)) (F@x) = f(x)) aslx) (8T

x€ k negrest mbrs of I

Notice the only differences between this new rule and the rule given by Equa-
tion (8.6) are that the contribution of instance x to the weight update is now
multiplied by the distance penalty K(d(x;, x)), and that the error is summed over
only the k nearest training examples. In fact, if we are fitting a linear function
to a fixed set of training examples, then methods much more efficient than gra-
dient descent are available to directly solve for the desired coefficients wy. .. w,.
Atkeson et al. (1997a) and Bishop (1995) survey several such methods.

3. Briefly explain radial basis function.

One approach to function approximation that is closely related to distance-weighted
regression and also to artificial neural networks is learning with radial basis func-
tions (Powell 1987; Broomhead and Lowe 1988, Moody and Darken 1989). In
this approach, the learned hypothesis is a function of the form

k
fxy=wo+ Y wuKa(d(xu, x)) (8.8)

=1

where each x, is an instance from X and where the kernel function K, (d(x..x)}
is defined so that it decreases as the distance d(x,, x) increases. Here k is a user-
provided constant that specifies the number of kernel functions to be included.
Even though f(x) is a global approximation to f(x), the contribution from each
of the K,(d(x,, x)) terms is localized to a region nearby the point x,,. It is common

to choose each function K, {d(x,,x)) to be a Gaussian function (see Table 5.4)
centered at the point x, with some variance a2,
42 Xy, X

Ku(d(x, 1)) = e52* 7
We will restrict our discussion here to this common Gaussian kernel function.
As shown by Hartman et al. (1990), the functional form of Equation (8.8) can
approximate any function with arbitrarily small error, provided a sufficiently large
number k of such Gaussian kernels and provided the width o of each kernel can
be separately specified.

The function given by Equation (8.8) can be viewed as describing a two-
layer network where the first layer of units computes the values of the various
Ku(d(x,, x)) and where the second layer computes a linear combination of these
first-layer unit values. An example radial basis function (RBF) network is illus-
trated in Figure 8.2.



Given a set of training examples of the target function, RBF networks are
typically trained in a two-stage process, First, the number k of hidden units is
determined and each hidden unit u is defined by choosing the values of x, and o2
that define its kemel function K,(d(x., x)). Second, the weights w, are trained to
maximize the fit of the network to the training data, using the global error criterion
miven by Equation (8.5). Because the kernel functions are held fixed during this
second stage, the linear weight values w, can be trained very efficiently.

Several alternative methods have been proposed for choosing an appropriate
number of hidden units or, equivalently, kernel functions. One approach is to
allocate a Gaussian kernel function for each training example {x;, f(x;}}, centering
this Gaussian at the point x;. Each of these kernels may be assigned the same width
o, Given this approach, the RBF network learns a global approximation to the
target function in which each training example (x;, f(x;}} can influence the value
of f only in the neighborhood of x;. One advantage of this choice of kemel
functions is that it allows the RBF network to fit the training data exactly. That
is, for any set of m training examples the weights wy...w,, for combining the
m Gaussian kernel functions can be set so that f(x;) = f(x;) for each training
example {x;, f{x;)).

FIGURE 8.2

A radial basis function network. Each hidden unit produces
an activation determined by a Gauwssian function centered at
some instance x,. Therefore, its activation will be close to zero
unless the input x is near x,. The oufput unit produces a linear
combination of the hidden unit activations. Although the network
shown here has just one cutput, multiple output units can also

a.fxk o ¥l a irl

To summarize, radial basis function networks provide a global approxima-

tion to the target function, represented by a linear combination of many local
kernel functions. The value for any given kemel function is non-negligible only
when the input x falls into the region defined by its particular center and width.
Thus, the network can be viewed as a smooth linear combination of many local
approximations to the target function. One key advantage to RBF networks is that
they can be trained much more efficiently than feedforward networks trained with
BackrropacaTion. This follows from the fact that the input layer and the output
layer of an RBF are trained separately.



