
SOFTWARE ENGINEERING & PROJECT MANGEMENT- BCS501

VTU Question Paper Solution

NO Question MARK

S

1 What are attributes of good software? Explain Key Challenges Faced in

Software Engineering.

Maintainability

Software should be written in such a way so that it can

evolve to meet the changing needs of customers. This is a

critical attribute because software change is an inevitable

requirement of a changing business environment.

Dependability and security

Software dependability includes a range of characteristics
including reliability, security and safety. Dependable

software should not cause physical or economic damage in
the event of system failure. Malicious users should not be

able to access or damage the system.

Efficiency

Software should not make wasteful use of system resources

such as memory and processor cycles. Efficiency therefore

includes responsiveness, processing time, memory

utilisation, etc.

Acceptability

Software must be acceptable to the type of users for which it
is designed. This means that it must be understandable,

usable and compatible with other systems that they use.

Key challenges:

²Heterogeneity

§Increasingly, systems are required to operate as distributed systems across
networks that include different types of computer and mobile devices.

²Business and social change

§Business and society are changing incredibly quickly as emerging economies

develop and new technologies become available. They need to be able to

change their existing software and to rapidly develop new software. ²Security

and trust

§As software is intertwined with all aspects of our lives, it is essential that we

can trust that software.

²Scale

§Software has to be developed across a very wide range of scales, from very
small embedded systems in portable or wearable devices through to Internet-

08

 scale, cloud-based systems that serve a global community.

b With neat diagram explain waterfall development model of software

development process

²There are separate identified phases in the waterfall model:

§Requirements analysis and definition

§System and software design

§Implementation and unit testing

§Integration and system testing

§Operation and maintenance

²The main drawback of the waterfall model is the difficulty of accommodating

change after the process is underway. In principle, a phase has to be complete

before moving onto the next phase.

²Inflexible partitioning of the project into distinct stages makes it difficult to
respond to changing customer requirements.

§Therefore, this model is only appropriate when the requirements are well-
understood and changes will be fairly limited during the design process.

§Few business systems have stable requirements.

²The waterfall model is mostly used for large systems engineering projects
where a system is developed at several sites.

In those circumstances, the plan-driven nature of the waterfall model helps
coordinate the work

06

c Explain general model of software design process

²A structured set of activities required to develop a

software system.

²Many different software processes but all involve:

§Specification – defining what the system should do;

§Design and implementation – defining the organization of the system and
implementing the system;

§Validation – checking that it does what the customer wants;

§Evolution – changing the system in response to changing customer needs.

²A software process model is an abstract representation of a process. It presents
a description of a process from some particular perspective.

²When we describe and discuss processes, we usually talk about the activities in

these processes such as specifying a data model, designing a user interface, etc.

and the ordering of these activities.

²Process descriptions may also include:

§Products, which are the outcomes of a process activity;

§Roles, which reflect the responsibilities of the people involved in the process;

§Pre- and post-conditions, which are statements that are true before and after a
process activity has been enacted or a product produced.

06

2a Define and differentiate functional and nonfunctional requirements.

²Functional requirements

§Statements of services the system should provide, how the system should react

to particular inputs and how the system should behave in particular situations.

§May state what the system should not do.

²Non-functional requirements

§Constraints on the services or functions offered by the system such as timing
constraints, constraints on the development process, standards, etc.

§Often apply to the system as a whole rather than individual features or
services.

06

b What is the requirement specification?Explain ways of system requirements.

²Developed in a project studying the air traffic control process

²Combines ethnography with prototyping

²Prototype development results in unanswered questions which focus the

08

 ethnographic analysis.

²The problem with ethnography is that it studies existing practices which may

have some historical basis which is no longer relevant.

c What is ethnography? How is it effective in requirement discovery?

²A social scientist spends a considerable time observing and analysing how
people actually work.

²People do not have to explain or articulate their work.

²Social and organisational factors of importance may be observed.

²Ethnographic studies have shown that work is usually richer and more
complex than suggested by simple system models.

²Requirements that are derived from the way that people actually work rather

than the way I which process definitions suggest that they ought to work.

²Requirements that are derived from cooperation and awareness of other

people‟s activities.

§Awareness of what other people are doing leads to changes in the ways in
which we do things.

Ethnography is effective for understanding existing processes but cannot
identify new features that should be added to a system.

²Developed in a project studying the air traffic control process

²Combines ethnography with prototyping

²Prototype development results in unanswered questions which focus the

ethnographic analysis. ²The problem with ethnography is that it studies existing

06

 practices which may have some historical basis which is no longer relevant.

3a

What is object oriented development (OOD)?Explain OOD briefly.

The process for OO development and graphical notation for

representing OO concepts consists of building a model of an

application and then adding details to it during design. The

methodology has the following stages:

System conception : Software development begins with business analysis or

users conceiving an application and formulating tentative requirements

Analysis : The analyst must work with the requestor to understand the

problem, because problem statements are rarely complete or correct. The

analysis model is a precise abstraction of what the desired system must do, not

how it will be done. It should not contain implementation decisions.The

analysis model has 2 parts:

• Domain model - a description of the real-world objects reflected within the

system Eg: Domain objects for a stock broker

• Application – model - a description of the parts of the application
system itself that are visible to the user.

tion might include stock, bond, trade and commission.

objects might control the execution of trades and present the results.

System design: The development teams devise a high – level strategy – the
system architecture for solving the application problem.

Class design : The class designer adds details to the analysis model in

accordance with the system design strategy. The focus of class design is the

data structures and algorithms needed to implement each class.

Implementation : Implementers translate the classes and relationships

developed during class design into particular programming language,
database or hardware. During implementation, it is important to follow good

software engineering practice so that traceability to the design is apparent

and so that the system remains flexible and extensible.

b Explain Links , associations. Explain UML notation for same with

example.

• Associations are the means for establishing relationships among

classes.An association is a description of a group of links with common

structure and common semantics.E.g. a person WorksFor a company. If two

classes in a model need to communicate with each other, there must be link

between them, and that can be represented by an association (connector).

• Associations are inherently bi-directional. The association name is

usually read in a particular direction but the binary association may be traversed

in either direction. Association can be represented by a line between these

classes with an arrow indicating the navigation direction. In case arrow is on

the both sides, association has bidirectional association.

Association connects related classes and is also denoted by a line.Show

association names in italics.
• Association end name Associations have ends. They are called

„Association Ends‟. They may have names (which often appear in problem
descriptions). Use of association end names is optional. But association end
names are useful for traversing associations.

II. Qualified association

• A qualified association is an association in which an attribute called

Qualifier the objects for a „many‟ association‟ end. A qualifier selects among

the target objects, reducing the effective multiplicity from „many‟ to „one‟.Both

below models are acceptable but the qualified model adds information.

Adding a qualifier clarifies the class diagram and increases the conveyed

information. In this case, the model including the qualification denotes that the

name of a file is unique

within a directory. Example of how a qualified association reduces multiplicity
(UML class diagram).

III. Association classes

An association class is an association that is also a class.Like the links of an

association, the instances of an association class derive identity from instances

of the constituent classes. Like a class, an association class can have attributes

and operations and participate in associations.

c What is generalisation and association?

Generalization

Deriving a class out of a parent class having some inherited

property(from the parent class) and some new property of the

derived class.

The term generalization is for the inheritance in the bottom to

the up direction i.e. from derived class to the parent class.

Generalization is the relationship between a class (superclass)

and one or more variations of the class (subclasses).

A superclass holds common attributes, attributes and

associations.The subclasses adds specific attributes, operations,

and associations. They inherit the features of their superclass.

Generalization is called a “IS A” relationship

A generalization connects a subclass to its superclass. It

denotes an inheritance of attributes and behavior from the
superclass to the subclass and indicates a specialization in the

subclass of the more general superclass.A solid line with a
hollow arrowhead that point from the child to the parent class.

Associations

• Associations are the means for establishing relationships among

classes.An association is a description of a group of links with common

structure and common semantics.E.g. a person WorksFor a company. If

two classes in a model need to communicate with each other, there must

be link between them, and that can be represented by an association

(connector).Associations are inherently bi-directional. The association

name is usually read in a particular direction but the binary association

may be traversed in either direction. Association can be represented by a

line between these classes with an arrow indicating the navigation

direction. In case arrow is on the both sides, association has

bidirectional association

4a What is object orientation? What are important characteristics of OO

approach? Explain.

In the object-oriented approach, the focus is on capturing the structure and
behavior of information systems into small modules that combines both data

and process. The main aim of Object Oriented Design (OOD) is to improve the
quality and productivity of system analysis and design by making it more

usable.

In analysis phase, OO models are used to fill the gap between problem and

solution. It performs well in situation where systems are undergoing

continuous design, adaption, and maintenance. It identifies the objects in

problem domain, classifying them in terms of data and behavior.

The OO model is beneficial in the following ways −

• It facilitates changes in the system at low cost.

• It promotes the reuse of components.

• It simplifies the problem of integrating components to configure large
system.

• It simplifies the design of distributed systems.

Elements of Object-Oriented System

Let us go through the characteristics of OO System −

• Objects − An object is something that is exists within problem domain

and can be identified by data (attribute) or behavior. All tangible entities

(student, patient) and some intangible entities (bank account) are

modeled as object.
• Attributes − They describe information about the object.

• Behavior − It specifies what the object can do. It defines the operation
performed on objects.

• Class − A class encapsulates the data and its behavior. Objects with
similar meaning and purpose grouped together as class.

• Methods − Methods determine the behavior of a class. They are nothing

more than an action that an object can perform.
• Message − A message is a function or procedure call from one object to

another. They are information sent to objects to trigger methods.
Essentially, a message is a function or procedure call from one object to
another.

Features of Object-Oriented System

An object-oriented system comes with several great features which are
discussed below.

Encapsulation

8

Encapsulation is a process of information hiding. It is simply the combination

of process and data into a single entity. Data of an object is hidden from the
rest of the system and available only through the services of the class. It allows

improvement or modification of methods used by objects without affecting
other parts of a system.

Abstraction

It is a process of taking or selecting necessary method and attributes to specify

the object. It focuses on essential characteristics of an object relative to

perspective of user.

Relationships

All the classes in the system are related with each other. The objects do not
exist in isolation, they exist in relationship with other objects.

b Describe model. Define the relationship between models.

Intention of object oriented modeling and design is to learn how to apply

object -oriented concepts to all the stages of the software development life

cycle.Object-oriented modeling and design is a way of thinking about

problems using models organized around real world concepts. The

fundamental construct is the object, which combines both data structure

and behavior.

Purpose of Models:

1. Testing a physical entity before building it

2. Communication with customers

3. Visualization

4. Reduction of complexity

Types of Models:

There are 3 types of models in the object oriented modeling and design are:

Class Model, State Model, and Interaction Model. These are explained as

following below.

1. Class Model:

The class model shows all the classes present in the system. The

class model shows the attributes and the behavior associated with

the objects.

The class diagram is used to show the class model.The class

diagram shows the class name followed by the attributes followed

by the functions or the methods that are associated with the object of

the class.Goal in constructing class model is to capture those

8

concepts from the real world that are important to an application.

2. State Model:

State model describes those aspects of objects concerned with time

and the sequencing of operations – events that mark changes, states

that define the context for events, and the organization of events and

states.Actions and events in a state diagram become operations on

objects in the class model. State diagram describes the state model.

3. Interaction Model:

Interaction model is used to show the various interactions between

objects, how the objects collaborate to achieve the behavior of the

system as a whole.
The following diagrams are used to show the interaction model:

o Use Case Diagram

o Sequence Diagram

o Activity Diagram

c With help of class diagram define multiplicity,association and names.

• Associations are the means for establishing relationships among
classes.An association is a description of a group of links with common

structure and common semantics.E.g. a person WorksFor a company. If two
classes in a model need to communicate with each other, there must be link

between them, and that can be represented by an association (connector).

• Associations are inherently bi-directional. The association name is
usually read in a particular direction but the binary association may be traversed
in either direction.

4

• Association can be represented by a line between these classes

with an arrow indicating the navigation direction. In case

arrow is on the both sides, association has bidirectional

association.

Association connects related classes and is also denoted by a
line.Show association names in italics.

• Association end name Associations have ends. They are

called „Association Ends‟. They may have names (which

often appear in problem descriptions). Use of association end

names is optional. But association end names are useful for

traversing associations.

II. Multiplicity

Multiplicity defines the number of objects associated

with an instance of the association.

UML diagrams explicitly list multiplicity at the end of

 association lines.Intervals are used to express
multiplicity:

5 Draw and Explain the Context Model for Patient Information System

With a neat diagram explain the phases in the Rational Unified Process

(RUP)

The Rational Unified Process (RUP) is an iterative software development

process framework created by the Rational Software Corporation, a division of

IBM since 2003.

RUP and its Phases

• Inception – Communication and planning are main. ...

• Elaboration – Planning and modeling are main. ...

• Construction – Project is developed and completed. ...

• Transition – Final project is released to public. ...

• Production – Final phase of the model.

Stands for "Rational Unified Process." RUP is a software development process

from Rational, a division of IBM. It divides the development process into four

distinct phases that each involve business modeling, analysis and design,

implementation, testing, and deployment. The four phases are:

1. Inception - The idea for the project is stated. The development team

determines if the project is worth pursuing and what resources will be

needed.

2. Elaboration - The project's architecture and required resources are

further evaluated. Developers consider possible applications of the

software and costs associated with the development.

3. Construction - The project is developed and completed. The software is
designed, written, and tested.

4. Transition - The software is released to the public. Final adjustments or

updates are made based on feedback from end users.

With the help of a neat state diagram , Illustrate the working of a

microwave oven

https://techterms.com/definition/enduser

6 a. What is model driven Engineering? State the three types of abstract

system model produced with a neat diagram

Model-driven engineering (MDE) is a software development methodology that
focuses on creating and exploiting domain models, which are conceptual
models of all the topics related to a specific problem.

1. A computation independent model (CIM) that models the important domain

abstractions used in the system. CIMs are sometimes called domain models.

You may develop several different CIMs, reflecting different views of the

system.

2. A platform independent model (PIM) that models the operation of the system

without reference to its implementation. The PIM is usually described using

UML models that show the static system structure and how it responds to

external and internal events.

3. Platform specific models (PSM) which are transformations of the platform
independent model with a separate PSM for each application platform.

b. What are the activities to be carried out in object design process of

a system? How the objects are identified?

Object Oriented Design (OOD), the technology independent concepts in the

analysis model are mapped onto implementing classes, constraints are

identified, and the interfaces are designed, which results in a model for the

 solution domain.
Object design activities include:

1. Reuse: Identification of existing solutions

• Use of inheritance

• Off-the-shelf components and
additional solution objects

• Design patterns

2. Interface specification

• Describes precisely each class interface

3. Object model restructuring

• Transforms the object design model to

improve its understandability and extensibility
4. Object model optimization

• Transforms the object design model to address
performance criteria such as response
time or memory utilization.

c. What is open / source development? Explain general models of open

source licensing.

An open source development model is the process used by an open source

community project to develop open source software. The software is then

released under an open source license, so anyone can view or modify the source

code

Copyleft licenses include the GPL license (GPL v2 and GPL v3) and the

Mozilla Public License 2.0. Since licenses are legally binding, you'll have to

carefully consider which one to choose when writing your open source code.

The following OSI-approved licenses are popular, widely used, or have strong

communities:

• Apache License 2.0.

• BSD 3-Clause "New" or "Revised" license.

• BSD 2-Clause "Simplified" or "FreeBSD" license.
• GNU General Public License (GPL)

• GNU Library or "Lesser" General Public License (LGPL)

• MIT license.

• Mozilla Public License 2.0

7 a. What is list driven development? With a neat diagram explain the

test driven development process

Test-driven development starts with developing test for each one of the

features. The test might fail as the tests are developed even before the

development. Development team then develops and refactors the code to pass

the test.

Test-driven development is related to the test- first programming evolved as part

of extreme programming concepts.

Test-Driven Development Process:

• Add a Test

• Run all tests and see if the new one fails
• Write some code

• Run tests and Refactor code

• Repeat

Context of Testing:

• Valid inputs
• Invalid inputs

• Errors, exceptions, and events

• Boundary conditions
• Everything that might break

Benefits of TDD:

• Much less debug time
• Code proven to meet requirements
• Tests become Safety Net
• Near zero defects

• Shorter development cycles

b. With neat diagram, explain six stages of acceptance testing process

There are six stages in the acceptance testing process, as shown in Figure They
are:

1. Define acceptance criteria This stage should, ideally, take place early in the

process before the contract for the system is signed. The acceptance criteria

should be part of the system contract and be agreed between the customer and

the developer. In practice, however, it can be difficult to define criteria so early

in the process. Detailed requirements may not be available and there may be

sig- nificant requirements change during the development process.

2. Plan acceptance testing This involves deciding on the resources, time, and

budget for acceptance testing and establishing a testing schedule. The accep-

tance test plan should also discuss the required coverage of the requirements

and the order in which system features are tested. It should define risks to the

testing process, such as system crashes and inadequate performance, and

discuss how these risks can be mitigated.
3. Derive acceptance tests Once acceptance criteria have been established, tests

 have to be designed to check whether or not a system is acceptable. Acceptance

tests should aim to test both the functional and non- functional characteristics

(e.g., performance) of the system. They should, ideally, provide complete

cover- age of the system requirements. In practice, it is difficult to establish

completely objective acceptance criteria. There is often scope for argument

about whether or not a test shows that a criterion has definitely been met.

4. Run acceptance tests The agreed acceptance tests are executed on the system.

Ideally, this should take place in the actual environment where the system will

be used, but this may be disruptive and impractical. Therefore, a user testing

environment may have to be set up to run these tests. It is difficult to automate

this process as part of the acceptance tests may involve testing the interactions

between end- users and the system. Some training of end-users may be
required.

5. Negotiate test results It is very unlikely that all of the defined acceptance

tests will pass and that there will be no problems with the system. If this is the

case, then acceptance testing is complete and the system can be handed over.

More com- monly, some problems will be discovered. In such cases, the

developer and the customer have to negotiate to decide if the system is good

enough to be put into use. They must also agree on the developer‟s response to

identified problems.

6. Reject/accept system This stage involves a meeting between the developers

and the customer to decide on whether or not the system should be accepted. If

the system is not good enough for use, then further development is required to

fix the identified problems. Once complete, the acceptance testing phase is

repeated

c. What are the different types of interfaces to be tested during

component testing ? Explain.

Component testing, also known as program or module testing, is done

after unit testing. In this type of testing those test objects can be tested

independently as a component without integrating with other

components e.g. modules, classes, objects, and programs. This testing is

done by the development team.

Tests are often generated using a components interface.

Interface itself forms a part of the components requirements and hence
this form of testing is black box

testing. However, the focus on the interface leads us to consider
interface testing in its own right.

Techniques such as

o --->pairwise testing

 o --->interface mutation
Pairwise testing:

Set of values for each input is obtained from the components
requirement.

Interface mutation:

The interface itself, such as function coded in /c orCORBA component
written in an IDL,serves to

extract the information needed to perform interface mutation.
o pairwise testing:is a black box testing

o interface mutation:is a white box testing

8. a) Write and Explain Lehman‟s laws related to system change
Ans:

08

8 b) What is Software Maintenance? Draw the general model of Reengineering
process and explain.
ANS:

Software Maintenance is Modifying a program after it has been put into use.

• The term is mostly used for changing custom software. Generic software
products are said to evolve to create new versions.

• Maintenance does not normally involve major changes to the system‟s
architecture.

• Changes are implemented by modifying existing components and adding new
components to the system.

Reengineering is Re-structuring or re-writing part or all of a legacy system
without changing its functionality.

Details if reengineering process is

Source code translation: Convert code to a new language.

Reverse engineering: Analyse the program to understand it;

08

Program structure improvement: Restructure automatically for
understandability;

Program modularisation: Reorganise the program structure;

Data reengineering: Clean-up and restructure system data.

8 c) What are the strategic options involved in Legacy system management?
Discuss
ANS:

Organisations that rely on legacy systems must choose a strategy for evolving
these systems

• Scrap the system completely and modify business processes so that it is no

longer required;

• Continue maintaining the system;

• Transform the system by re-engineering to improve its maintainability;

• Replace the system with a new system.

The strategy chosen should depend on the system quality and its business value.

04

Module -5

9. a) For the set of Tasks shown below, draw the activity bar chart for the project

scheduling.

ANS:

08

9. b) Write and Explain the factors affecting Software Pricing
ANS:
Factors affecting software pricing

05

9. c Explain briefly the algorithm cost modelling and write the difficulties.
ANS:

Cost is estimated as a mathematical function of product, project and process
attributes whose values are estimated by project managers:

Effort = A ́ SizeB´M

–A is an organisation-dependent constant,

–Size is code size of the software.

–B reflects the disproportionate effort for large projects

– M is a multiplier reflecting product, process and people attributes.

The most commonly used product attribute for cost estimation is code size.
Most models are similar but they use different values for A, B and M.

Difficulties:

The size of a software system can only be known accurately when it is finished.

• Several factors influence the final size

–Use of COTS and components;

–Programming language;

–Distribution of system.

• As the development process progresses then the size estimate becomes more

accurate.

• The estimates of the factors contributing to B and M are subjective and vary

according to the judgment of the estimator.

07

10.a

)
With a diagram , Explain the Phase involved in the software Review process.
ANS:

A group examines part or all of a process or system and its documentation to

find potential problems.

08

• Software or documents may be 'signed off' at a

review which signifies that progress to the next

development stage has been approved by

management.

• There are different types of review with different objectives

–Inspections for defect removal (product);

–Reviews for progress assessment (product and process);

–Quality reviews (product and standards).

A group of people carefully examine part or all of a software system and its

associated documentation. Code, designs, specifications, test plans, standards,

etc. can all be reviewed. Software or documents may be 'signed off' at a review

which signifies that progress to the next development stage has been approved

by management.

10.

b)

Explain briefly the key stages in the process of product measurement.

ANS:

A software measurement process as a part of the quality control process is

shown in Figure. The steps of measurement process are the followings:

1. Select measurements to be made. Selection of measurements that are
relevant to answer the questions to quality assessment.

2. Select components to be assessed. Selection of software components to

08

 be measured.

3. Measure component characteristics. The selected components are

measured and the associated software metric values computed.

4. Identify anomalous measurements. If any metric exhibit high or low

values it means that component has problems.

5. Analyze anomalous components. If anomalous values for particular

metrics have been identified these components have to be examined to

decide whether the anomalous metric values mean that the quality of the

component is compromised.

10.c

)
Write any four product and process standards.
ANS:

04

