

Internal Assessment Test 2

January 2024

Sub: Software Engineering and Project

Management

Sub Code:
BCS501 Branch: AIML/CSE-

AIML

Date

:

7/11/24 Duration:90 m Max Marks: 50
Sem :

V OBE

Answer any FIVE FULL

Questions

Marks CO R

B

T

1 What is waterfall model?

THE WATERFALL MODEL: The waterfall model, sometimes called the classic life

cycle, suggests a systematic sequential approach to software development that begins

with customer specification of requirements and progresses through planning,

modeling, construction, and deployment. Context: Used when requirements are

reasonably well understood. Advantage: It can serve as a useful process model in

situations where requirements are fixed and work is to proceed to complete in a linear

manner. The problems that are sometimes encountered when the waterfall model is

applied are: Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so indirectly. As a result,

changes can cause confusion as the project team proceeds. It is often difficult for the

customer to state all requirements explicitly. The waterfall model requires this and has

difficulty accommodating the natural uncertainty that exist at the beginning of many

projects. The customer must have patience. A working version of the programs will

not be available until late in the project time-span. If a major blunder is undetected

then it can be disastrous until the program is reviewed.

10

CO1 L2

Communication
Project initiation
requirement

gathering
Planning

Estim
ating
Sc
hed
ulin
g

trac
kin
g

Modeling
Ana
lysis
de
sig
n

Constructiono

C

o

d

e
t
e
s
t

ock
Deployment

Delivery

Support

feedba
6

 ck

2. List & explain different types of evolutionary process models

Prototype model

Spiral model

PROTOTYPING: Prototyping is more commonly used as a technique that can be

implemented within the context of anyone of the process model. The prototyping

paradigm begins with communication. The software engineer and customer meet

and define the overall objectives for the software, identify whatever requirements are

known, and outline areas where further definition is mandatory. Prototyping iteration

is planned quickly and modeling occurs. The quick design leads to the construction

of a prototype. The prototype is deployed and then evaluated by the customer/user.

Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while

at the same time enabling the developer to better understand what needs to be done.

Qu ick p lan Com municat ion Deployment De live r y & Fe e dback Context: Mo d

e lin g Qu ick d e sig n Const ruct ion of prot ot ype If a customer defines a set of

general objectives for software, but does not identify detailed input, processing, or

output requirements, in such situation prototyping paradigm is best approach. If a

developer may be unsure of the efficiency of an algorithm, the adaptability of an

operating system then he can go for this prototyping method. Advantages: The

prototyping paradigm assists the software engineer and the customer to better

understand what is to be built when requirements are fuzzy. The prototype serves as

a mechanism for identifying software requirements. If a working prototype is built,

the developer attempts to make use of existing program fragments or applies tools.

Prototyping can be problematic for the following reasons: The customer sees what

appears to be a working version of the software, unaware that the prototype is held

together ―with chewing gum and baling wire‖, unaware that in the rush to get it

working we haven‘t considered overall software quality or long-term

maintainability. When informed that the product must be rebuilt so that high-levels

of quality can be maintained, the customer cries foul and demands that ―a few

fixes‖ be applied to make the prototype a working product. Too often, software

development relents. The developer often makes implementation compromises in

order to get a prototype working quickly. An inappropriate operating system or

programming language may be used simply because it is available and known; an

inefficient algorithm may be implemented simply to demonstrate capability. After a

time, the developer may become comfortable with these choices and forget all the

reasons why they were inappropriate. The less-than-ideal choice has now become an

integral part of the system.

10

CO1 L3

The spiral model, originally proposed by Boehm, is an evolutionary software

process model that couples the iterative nature of prototyping with the controlled and

systematic aspects of the waterfall model. The spiral model can be adapted to apply

throughout the entire life cycle of an application, from concept development to

maintenance. Using the spiral model, software is developed in a series of

evolutionary releases. During early iterations, the release might be a paper model or

prototype. During later iterations, increasingly more complete versions of the

engineered system are planning scheduling risk analysis communication start

deployment delivery produced. feedback modeling analys is design construction

code test

Anchor point milestones- a combination of work products and conditions that are

attained along the path of the spiral- are noted for each evolutionary pass. The first

circuit around the spiral might result in the development of product specification;

subsequent passes around the spiral might be used to develop a prototype and then

progressively more sophisticated versions of the software. Each pass through the

planning region results in adjustments to the project plan. Cost and schedule are

adjusted based on feedback derived from the customer after delivery. In addition, the

project manager adjusts the planned number of iterations required to complete the

software. It maintains the systematic stepwise approach suggested by the classic life

cycle but incorporates it into an iterative framework that more realistically reflects

the real world. The first circuit around the spiral might represent a ―concept

development project‖ which starts at the core of the spiral and continues for multiple

iterations until concept development is complete. If the concept is to be developed

into an actual product, the process proceeds outward on the spiral and a ―new

product development project‖ commences. Later, a circuit around the spiral might be

used to represent a ―product enhancement project.‖ In essence, the spiral, when

characterized in this way, remains operative until the software is retired. Context:

The spiral model can be adopted to apply throughout the entire life cycle of an

application, from concept development to maintenance.

Advantages:

It provides the potential for rapid development of increasingly more complete

versions of the software.

The spiral model is a realistic approach to the development of large-scale systems

and software. The spiral model uses prototyping as a risk reduction mechanism but,

more importantly enables the developer to apply the prototyping approach at any

stage in the evolution of the product. Draw Backs: The spiral model is not a panacea.

It may be difficult to convince customers that the evolutionary approach is

controllable. It demands considerable risk assessment expertise and relies on this

expertise for success. If a major risk is not uncovered and managed, problems will

undoubtedly occur.

3 Define Requirement Engineering. Explain its Distinct tasks.

Requirements engineering builds a bridge to design and construction. Requirements

engineering provides the appropriate mechanism for understanding what the customer

wants, analyzing need, assessing feasibility, negotiating a reasonable solution,

specifying the solution unambiguously, validating the specification, and managing the

requirements as they are transformed into an operational system. It encompasses seven

distinct tasks: inception, elicitation, elaboration, negotiation, specification, validation,

and management.

 a) Inception. In general, most projects begin when a business need is identified or a

potential new market or service is discovered. Stakeholders from the business

community define a business case for the idea, try to identify the breadth and depth of

the market, do a rough feasibility analysis, and identify a working description of the

project’s scope. At project inception, you establish a basic understanding of the

problem, the people who want a solution, the nature of the solution that is desired, and

the effectiveness of preliminary communication and collaboration between the other

stakeholders and the software team.

b)Elicitation. Ask the customer, what the objectives for the system or product are,

what is to be accomplished, how the system or product fits into the needs of the

business, and finally, how the system or product is to be used on a day-to-day basis.

A number of problems that are encountered as elicitation occurs. • Problems of scope.

The boundary of the system is ill-defined or the customers/users specify unnecessary

technical detail that may confuse, rather than clarify, overall system objectives. •

Problems of understanding. The customers/users are not completely sure of what is

10

CO2 L2

needed, have a poor understanding of the capabilities and limitations of their

computing environment, don’t have a full understanding of the problem domain, have

trouble communicating needs to the system engineer, omit information that is believed

to be “obvious,” specify requirements that conflict with the needs of other

customers/users, or specify requirements that are ambiguous or un testable. • Problems

of volatility. The requirements change over time. To help overcome these problems,

you must approach requirements gathering in an organized manner.

 c) Elaboration. The information obtained from the customer during inception and

elicitation is expanded and refined during elaboration. This task focuses on developing

a refined requirements model that identifies various aspects of software function,

behavior, and information. Elaboration is driven by the creation and refinement of user

scenarios that describe how the end user (and other actors) will interact with the

system. Each user scenario is parsed to extract analysis classes—business domain

entities that are visible to the end user. The attributes of each analysis class are defined,

and the services that are required by each class are identified. The relationships and

collaboration between classes are identified, and a variety of supplementary diagrams

are produced.

d)Negotiation. It usual for customers, to given limited business resources. It’s also

relatively common for different customers or users to propose conflicting

requirements, arguing that their version is “essential for our special needs.” You have

to reconcile these conflicts through a process of negotiation. Customers, users, and

other stakeholders are asked to rank requirements and then discuss conflicts in priority.

Using an iterative approach that prioritizes requirements, assesses their cost and risk,

and addresses internal conflicts, requirements are eliminated, combined, and/or

modified so that each party achieves some measure of satisfaction.

 e) Specification. Specification means different things to different people. A

specification can be a written document, a set of graphical models, a formal

mathematical model, a collection of usage scenarios, a prototype, or any combination

of these. Some suggest that a “standard template” should be developed and used for a

specifcation, arguing that this leads to requirements that are presented in a consistent

and therefore more understandable manner. However, it is sometimes necessary to

remain flexible when a specification is to be developed. For large systems, a written

document, combining natural language descriptions and graphical models may be the

best approach.

4 Analyze the various approaches used in requirement modelling

Elements of the Requirements Model: There are many different ways to look at the

requirements for a computer-based system. Different modes of representation force

you to consider requirements from different viewpoints—an approach that has a

higher probability of uncovering omissions, inconsistencies, and ambiguity.

Scenario-based elements: The system is described from the user’s point of view

using a scenario-based approach. For example, basic use cases and their

corresponding use-case diagrams evolve into more elaborate template-based use

cases. Scenario-based elements of the requirements model are often the first part of

the model that is developed. Three levels of elaboration are shown, culminating in a

scenario-based representation.

Class-based elements: Each usage scenario implies a set of objects that are

manipulated as an actor interacts with the system. These objects are categorized into

classes—a collection of things that have similar attributes and common behaviors.

 10

CO2 L2

Behavioral elements: The behavior of a computer-based system can have a

profound effect on the design that is chosen and the implementation approach that is

applied. Therefore, the requirements model must provide modeling elements that

depict behavior. The state diagram is one method for representing the behavior of a

system by depicting its states and the events that cause the system to change state. A

state is any externally observable mode of behavior. In addition, the state diagram

indicates actions taken as a consequence of a particular event.

Flow-oriented elements: Information is transformed as it flows through a computer-

based system. The system accepts input in a variety of forms, applies functions to

transform it, and produces output in a variety of forms. Input may be a control signal

transmitted by a transducer, a series of numbers typed by a human operator, a packet

of information transmitted on a network link, or a voluminous data file retrieved

from secondary storage. The transform(s) may comprise a single logical comparison,

a complex numerical algorithm, or a rule-inference approach of an expert system.

5 Construct an explanation of the principles of agility.

Agility Principles: The Agile Alliance defines 12 agility principles for those who

want to achieve agility:

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

 3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

 4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

 9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self–organizing

teams.

 12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

 10

CO3 L3

6
Explain the process of Extreme Programming

XP Planning

● Begins with the creation of “user stories”

● Agile team assesses each story and assigns a cost

● Stories are grouped to for a deliverable increment

● A commitment is made on delivery date

 10

CO3 L2

● After the first increment “project velocity” is used to help define subsequent

delivery dates for other increments

XP Design

● Follows the KIS principle

● Encourage the use of CRC cards (see Chapter 8)

● For difficult design problems, suggests the creation of “spike solutions”—a

design prototype

● Encourages “refactoring”—an iterative refinement of the internal program

design

XP Coding

● Recommends the construction of a unit test for a store before coding

commences

● Encourages “pair programming”

XP Testing

● All unit tests are executed daily

● “Acceptance tests” are defined by the customer and excuted to assess

customer visible functionality

