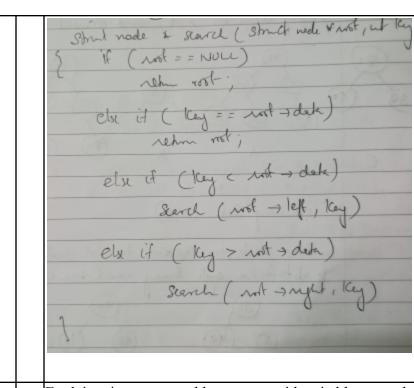
Sub:	DATA STRUCTURES AND APPLICATIONS					Sub Code:	BCS304
Date:		Duration:	90 minutes	Max Marks:	50	Sem/Sec:	
						III A,B,C	

Scheme and Solutions


Construct a binary search tree for the given values 14, 15, 7, 9, 18, 3, 5, 16, 20. Write the C function for the inorder, preorder and postorder traversal and apply the same.

Answer:

Construction of BST-4M(step wise)

1 a 23 (5) (1) (2) (5) (2)

Search an item in the BST-2M

Explain winner tree and looser tree with suitable examples.

Answer:

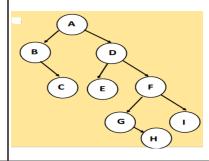
b

Winner Tree Explanation with example-2M

Looser Tree Explanation with example-2M

Construct a binary tree by using the following in-order and pre-order traversal.

In-order: BCAEDGHFI


Pre-order: ABCDEFGHI

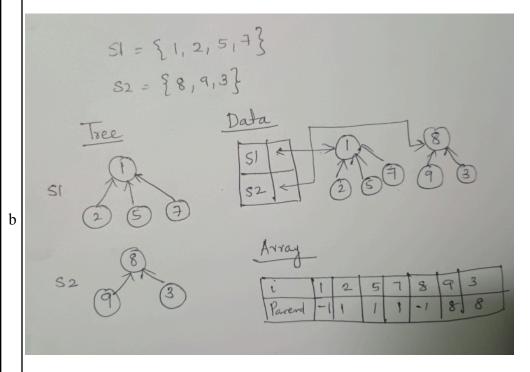
Also perform the post order traversal of the tree.

Answer:

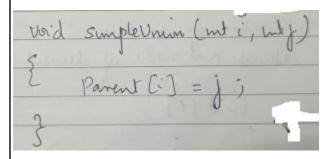
2

a Construction of Binary Tree-3M

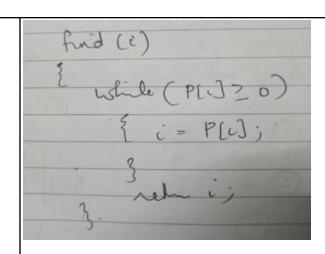
Postorder-1M CBEHGIFDA

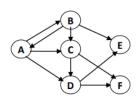

Demonstrate the tree, data, and array representation for the disjoint sets,

 $S1 = \{1,2,5,7\}$


S2= {8,9,3}. Also write algorithm for simple union () and simple find().

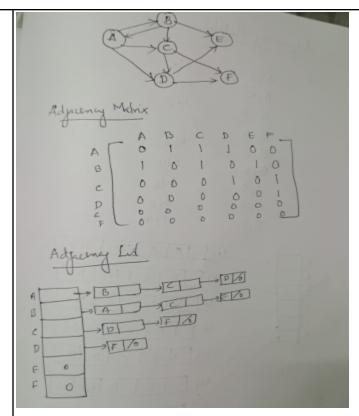
Answer:

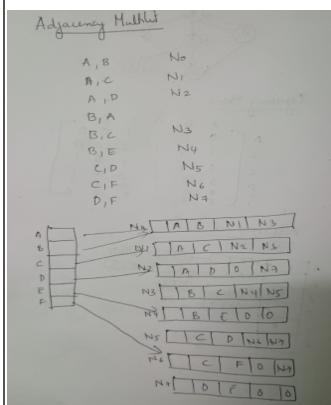

Representation of tree, data, array -1M,2M,1M


simple union()- 1M

simple find()- 1M

Define Graph. For the given graph, show all the three representations of the graph.

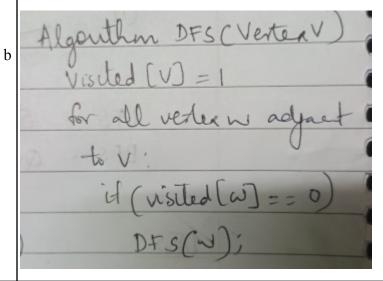

3 a Answer:


Representation of graph

Adjacency Matrix 1M

Adjacency List 2M

Adjacency Multilist 2M


What are the methods used for traversing a graph? Explain any one with example and write C function for the same.

Answer:

Methods for Traversing — 1M

DFS (Depth First Search) BFS (Breadth First Search)

Algorithm for DFS or BFS 2M

	Alexanten BFS (V)
	20
	(a nes a GC . I) : comied not
	beginning at vertex V and array visited of n inhally set to false
	beginny at voles I ama array visued
	of n' whally set to take I
	Visited (V) = true;
	unitable quere (a);
	add (QN);
	While Foot emply Queue (Q) do.
	V- 1.0.t. (0 V)
	Pall to be so all the
	for all vertex 100 adjacent 646.
	5
	if not wated (w) then
	{ ,,, ,, ,, ,
	ada (d, w),
	Misited (w) = true;
	1
	Mo en sort junden a control
	2
	. 3

Example 2M

Answer:

Given a hash table with 10 slots. The hash function is h(k)=k mod 10.

The collision is overcome by chaining. The following keys are inserted in the order.

5,28,19,15,20,33,12,17,10. Develop the corresponding hash table.

a

b

4

Explain the following by taking suitable examples,

a) Linear Probing b) Quadratic Probing c) Folding Method

Answer:

Linear Probing technique with example-2M

Quadratic Probing technique with example-2M

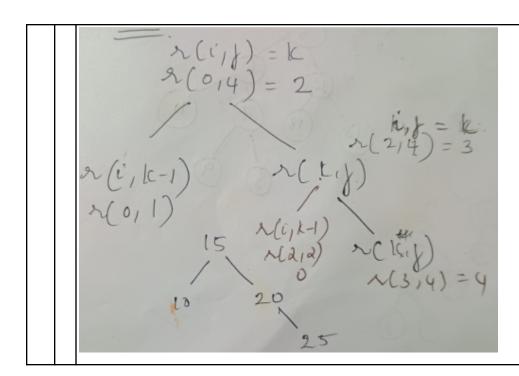
	Folding technique with example- 2M					
	Explain dynamic hashing using directories with the help of an example. Answer:					
	Dynamic hashing using Directories 2M					
	-elements: 16,4,6,22,24,10,31,7,9,20,26. Bucket Size: 3					
	16- 10000					
	4- 00100					
	6- 00110					
	22- 10110					
a	24- 11000					
	10- 01010					
	31- 11111					
	7- 00111					
	9- 01001					
	20- 10100					
	26- 11010					
b	Differentiate between height biased and weight biased leftist tree with examples. Answer:					

Height biased leftist tree 2.5M Weight biased leftist tree 2.5M

What is the need for an optimal BST. Find the optimal BST for n=4,

Keys are 10,15,20, 25.

p1, p2, p3, p4 =3,3,1,1


q0, q1, q2, q3, q4 =2,3,1,1,1

Answer:

Need for BST-2M

Problem-8M

		W(i,c) = 9(i)							
		((i,i)=0							
		9	r (i,i)=	0	2		3	. 4	
6	a	1	Npo = 2	W11 = 3	W22 C22	= 1	W33=1 (1-	W44= 1 C44=0	
			C00 = 0	CH = 0	AZZ	=0	N35=0	144:0	
		1	Mo1 = 8 1-1	W12 = 762	10.37	= 3	$W_{34} = 3$ $C_{34} = 3$		
			101 = 1	M2 = 2		= 3	234=4		
		2	Wos = 102 Cos = \$9. Nos = \$	W13 = 9	W34 .C24	= 5			
		3	Way = 14 Cay = 25	114 = 11		= 3			
		¥	NO4 = 16	C19 = 19 Mu = 2					
		4	Coy = 32						
		11.	-						
		11/67	The second second						

