CMR INSTITUTE OF TECHNOLOGY

USN
Internal Assessment Test | — Feb 2025
Sub: | Programming and Problem Solving in C Sub Code: MMC101
Date: [°-02-2025 Duration:| 90 min’s Max 50 | Sem: | I | Branch: MCA
Marks:
Note : Answer FIVE FULL Questions, choosing ONE full question from each Module
OBE
PART I MARK
S CO| RB
T
1| Give the structure of C program. Also explain the compilation process in [10] %O L2
detail.
OR
2|What is the use of switch statement? Write a C program to simulate a simple [10] |CO|L2
calculator using switch statement. 1
PART Il
3What are the different categories of pre-processor directives used in C. Give [10] |co|L2
examples. 1
OR
4|Explain the different types of looping statements in C with examples. Also give| [10] [COL2
the use of break and continue statements in loops. 1
PART Il
Write an algorithm and develop a C program that reads N integer numbers CO2|L3
and arrange them in ascending order using selection Sort. OR [10]
What is an array? Write a C program to input N integers and find largest and CO2|L2,L
second largest element in array. [10] 3
PART IV
Discuss any 5 string library functions with syntax . Write a C program to [10] |cozlL2L
copy one string to another without using built in function. OR 3
Develop a C program to print the following pattern.
H [10] |cO2|L3
HE
HEL
HELL
HELLO
HELLO
HELL
HEL
H
H

Page 1 of

PARTV
9 |Define function. With an example code, explain the following: CO3|L1,L
. Function Declaration ii. Function Definition [10] 3
iii. Function Call iv. Argument Passing
OR
10|What are the different categories of functions? Write a C-program using
function to generate the Fibonacci series. [10] CO3|L2,L
3

1. Give the structure of C program. Also explain the compilation process in detail.

Documentation Section
Pre-processor directives
Definition Section and Global declarations void

main()

{ Declaration part
Executable part

3
Sub Program Section
{ Body of the Sub
H

Comments:

» Comments are used to convey a message and used to increase the

readability of a program.

» They are not processed by the compiler. There are two types of

comments:
1. Single line comment

2. Multi line comment
Single line comment

A single line comment starts with two forward slashes (//) and is automatically terminated with the

end of the line.
E.g. /[First C program
Multi-line comment

A multi-line comment starts with /* and terminates with */.

E.g. /* This program is
used to find Area of the
Circle */

Section 1.Preprocessor Directive section

» The preprocessor directive section is optional.
» The pre-processor statement begins with # symbol and is also called the pre-

processor directive.

» These statements instruct the compiler to include C preprocessors such as
header files and symbolic constants before compiling the C program.

Page 2 of

» They are executed before the compiler compiles the
source code. Some of the pre-processor statements are listed
below:
(i)Header files
#include<stdio.h>- to be included to use standard /O functions : prinf(),scanf()
(i)Symbolic constants
#define PI 3.1412
#define TRUE 1
Section 2: Global declaration Section
This section is used to declare a global variable. These variables are declared before the main()
function as well as user defined functions.

Global variables are variables that are used in more than one function.

Section 3: Function Section
This section is compulsory. This section can have one or more functions. Every program written in
C language must contain main () function. The execution of every C program always begins with the
function main ().
Every function consists of 2 parts

1. Header of the function

2. Body of the function

Compilation and Linking process

Page 3 of

Program process flow File name

in each steps Description
Source code sample.c
Preprocessor — Preprocessor replaces #define (macro),

#include (files), conditional compilation
codes like #ifdef, #ifndef by their
Respective values & source codes in source file

r
[Expanded source code| sample.i

Compiler — Compiler compiles expanded source code
to assembly source code
r
[Assembly source code| sample.s
Assembler — Itis a program that converts assembly
. source code to object code.
Object code sample.o
—This is a program that converts object code
Linker to executable code and also combines all
object codes together.
Executable code sample.exe
Loader — Executable code is loaded in CPL and
executed by loader program.
r
Execution

There are 4 regions of memory which are created by a compiled C program. They are,

1.

2
3
4

First region — This is the memory region which holds the executable code of the program.

2" region — In this memory region, global variables are stored.

3" region — stack

4" region — heap

Compiling
e The process of converting the source code into object code is called

compiling. Compiler converts source file to object code and save as separate file
with an extension .obj.

e Ifthere is an error in the source code, it does not compile source code and
indicates error.

Linking
e A C program contains predefined function. The necessary libraries are linked to
the object code file by the linker and produce .exe file. The executable files are
executed by the machine.

Executing
o System loader loads the .exe file in the main memory for the execution of the
program.

Page 4 of

Loader

o Loader is the program of the operating system which loads the executable from
the disk into the primary memory (RAM) for execution. It allocates the memory
space to the executable module in main memory and then transfers control to the
beginning instruction of the program.

2. What is the use of switch statement? Write a C program to simulate a simple
calculator using switch statement.

The switch statement in C is a multi-way decision-making statement that allows a variable to be
tested against multiple values. It is useful when we have multiple conditional branches based on the
value of a variable.

Uses of switch Statement:

e Menu-driven programs
e Simple decision-making based on a single variable
e Reduces multiple if-else if conditions for better readability

Syntax of switch Statement:
switch (expression) {
case valuel:
/I Code block for valuel
break;
case value2:
/I Code block for value2
break;
default:
/I Default block if no case matches
}

#include <stdio.h>

int main() {
char operator;
double num1, num2, result;

/l Taking input from the user
printf("Enter first number: ");
scanf("%If", &numl);

printf("Enter an operator (+, -, *, /): ");
scanf(" %c", &operator); // Space before %c to handle newline

printf("Enter second number: ");
scanf("%If", &num2);

/I Switch case for arithmetic operations

switch (operator) {
case '+".

Page 5 of

result = numl + num2;
printf("Result: %.2If\n", result);
break;
case '-"
result = numl - num2;
printf("Result: %.2If\n", result);
break;
case "*":
result = numl * numz2;
printf("Result: %.2If\n", result);
break;
case /"
if (num2 !=0)
result = numl / num2;
else {
printf("Error! Division by zero.\n");
return 1;

printf("Result: %.2If\n", result);
break;

default:
printf(*Invalid operator'\n");

¥

return O;

}

3. What are the different categories of pre-processor directives used in C. Give
examples.
Preprocessor directives in C are instructions that are processed before compilation. They begin
with # and help in code modularity, efficiency, and readability.

Categories of Preprocessor Directives

i. Macro Substitution Directives (#define)

Used to define constants and macros (code replacement).
Example:

#define P1 3.14159

#define SQUARE(X) (x * X) // Macro function
Use Case: Reduces redundancy and improves readability.

ii. File Inclusion Directives (#include)
e Used to include header files.
Example:
. #include <stdio.h> // Standard library file

iii. Conditional Compilation Directives (#ifdef, #ifndef, #if, #else, #endif)
Used to compile specific parts of the code based on conditions.
Example:
#define DEBUG // Uncomment to enable debugging

Page 6 of

#ifdef DEBUG
printf("Debug mode is ON\n");
#endif

Example Program Using Preprocessor Directives
#include <stdio.h>

#define P1 3.14159

#define AREA(r) (Pl *r *r)

int main() {
double radius = 5.0;
printf("Area of circle: %.2If\n", AREA(radius));

#ifdef DEBUG
printf("Debugging mode enabled.\n");
#endif

return O;

4. Explain the different types of looping statements in C with examples. Also give the
use of break and continue statements in loops.

In C programming, looping statements are used to execute a block of code multiple times until a
specified condition is met. There are three types of loops:

1. for Loop

The for loop is used when the number of iterations is known beforehand. It consists of three parts:
initialization, condition, and increment/decrement.

Syntax:

for(initialization; condition; increment/decrement) {
/I Code to be executed

}
Example:

#include <stdio.h>
int main() {
for(inti=1;i<=5;i++){
printf("%d ", i);
}

return O;

}

Output:
12345

Page 7 of

2. while Loop

The while loop is used when the number of iterations is not known in advance. It executes as long as
the condition is true.

Syntax:

while(condition) {
/I Code to be executed

¥

Example:

#include <stdio.h>
int main() {
inti=1;
while(i <=5) {
printf(%d ", i);
i++;
}

return O;

¥

Output:
12345

3. do-while Loop
The do-while loop executes the block of code at least once, regardless of the condition.
Syntax:

do {
/I Code to be executed
} while(condition);

Example:

#include <stdio.h>
int main() {
inti=1;
do {
printf("%d ", i);
i++;
} while(i <= 5);
return O;

}

Output:
12345

Page 8 of

Use of break and continue Statements in Loops

1. break Statement
The break statement is used to exit a loop prematurely when a certain condition is met.
Example:

#include <stdio.h>

int main() {
for(inti=1;i<=5; i++) {
if(i == 3)

break; // Exits the loop when i is 3
printf("%d ", i);

return O;

¥

Output:
12

2. continue Statement
The continue statement is used to skip the current iteration of the loop and move to the next iteration.
Example:

#include <stdio.h>

int main() {
for(inti=1;i<=5;i++){
if(i ==3)

continue; // Skips iteration when i is 3
printf("%d ", i);
}

return O;

}

Output:
1245

5. Write an algorithm and develop a C program that reads N integer numbers and
arrange them in ascending order using selection Sort.

Selection Sort works by repeatedly selecting the smallest element from the unsorted part of the
array and swapping it with the first element of the unsorted part.
Algorithm

1. Start

2. Input the number of elements N

3. Input N integer numbers into an array

Page 9 of

4. Repeat for i = 0to N-2
Set minindex =i
For j =i+1to N-1
If arr[j] <arr[minindex], update minindex = j
Swap arr[i] and arr[minindex]
5. Print the sorted array
6. End

#include <stdio.h>

/I Function to perform Selection Sort
void selectionSort(int arr[], int n) {
int i, j, minindex, temp;

for(i=0;i<n-1;i++) {
minindex = i;

// Find the minimum element in the unsorted part
for(G=i+1l;j<n;j++) {
if(arr[j] < arr[minindex]) {
minindex = j;
}
}

/I Swap the found minimum element with the first element of the unsorted part
temp = arr[i];
arr[i] = arr[minindex];
arr[minindex] = temp;
}
}

/I Function to display the array
void displayArray(int arr[], int n) {
for(inti=0;i<n;i++) {
printf("%d ", arr[i]);

}
printf("\n");
}

int main() {
int n;

/I Input number of elements
printf("Enter the number of elements: ");
scanf("%d", &n);

int arr[n];

Il Input elements

printf("Enter %d integers: ", n);

for(inti=0;i<n;i++) {
scanf("%d", &arr[i]);

}

I/l Sorting the array

Page 10 of

selectionSort(arr, n);

// Display sorted array
printf("Sorted array in ascending order: *);
displayArray(arr, n);

return O;

¥

6. What is an array? Write a C program to input N integers and find largest and
second largest element in array.

An array in C is a collection of elements of the same data type stored at contiguous memory
locations. It allows efficient access and manipulation of multiple values using a single
variable name and index.

#include <stdio.h>

int main() {

int array[10] = {101, 11, 3, 4, 50, 69, 7, 8, 9, 0};
int loop, largest, second;
if(array[0] > array[1]) {

largest = array[0];

second = array[1];

}else {

largest = array[1];

second = array[0];

}

for(loop = 2; loop < 10; loop++) {
if(largest < array[loop]) {
second = largest;

largest = array[loop];

} else if(second < array[loop]) {
second = array[loop];

¥

}
printf("Largest - %d \nSecond - %d \n", largest, second);

return O;

}

7. Discuss any 5 string library functions with syntax . Write a C program to copy one
string to another without using built in function. Five String Library Functions in C

The C standard library provides several functions to manipulate strings, which are declared in the
<string.h> header file.

1. strlen() - Find Length of a String
Syntax: size_t strlen(const char *str);

Description: Returns the length of the string (excluding the null character \0).

Page 11 of

Example:

#include <stdio.h>
#include <string.h>

int main() {
char str[] = "Hello";

printf("Length of string: %lu\n”, strlen(str));
return O;

¥

Output: Length of string: 5

2. strcpy() - Copy One String to Another
Syntax: char *strcpy(char *dest, const char *src);

Description: Copies the contents of src into dest (including the null character).

Example:

#include <stdio.h>
#include <string.h>

int main() {
char source[] = "CMRIT";
char destination[20];
strcpy(destination, source);
printf("Copied String: %s\n", destination);
return O;

}

Output: Copied String: CMRIT

3. strcmp() - Compare Two Strings
Syntax: int strcmp(const char *strl, const char *str2);
Description: Compares two strings and returns:
0 if both are equal
A negative value if strl < str2
A positive value if strl > str2
Example:

#include <stdio.h>

Page 12 of

#include <string.h>

int main() {
char str1[] = "Hello";
char str2[] = "World";

if (stremp(strl, str2) == 0)
printf("Strings are equal.\n");
else
printf("Strings are not equal.\n");

return O;

¥

Output: Strings are not equal.

4. strcat() - Concatenate Two Strings

Syntax: char *strcat(char *dest, const char *src);
Description: Appends src to dest, modifying dest.
Example:

#include <stdio.h>

#include <string.h>

int main() {
char str1[20] = "Hello, ";
char str2[] = "World!";
strcat(strl, str2);
printf("Concatenated String: %s\n", strl);
return O;

}

Output: Concatenated String: Hello, World!

5. strrev() - Reverse a String (Non-Standard)

e Syntax: char *strrev(char *str);
Description: Reverses the given string in place (not a standard function in <string.h>, but
available in some compilers).
Example:
#include <stdio.h>
#include <string.h>

int main() {
char str[] = "CMRIT";
printf("Reversed String: %s\n", strrev(str));
return O;

¥

Output: Reversed String: TIRMC

Page 13 of

C Program to Copy One String to Another Without Using strcpy()
#include <stdio.h>

void copyString(char dest[], char src[]) {
inti=0;
while (src[i] '="0") {
dest[i] = src[i];
i++;

}
dest[i] = "\0"; // Add null terminator
}

int main() {
char source[100], destination[100];

I Input string
printf("Enter a string: ");
scanf("%[™n]s", source); // Read string with spaces

/I Copy string manually
copysString(destination, source);

// Display copied string
printf("Copied String: %s\n", destination);

return O;

}

H

HE

HEL

HELL
HELLO
HELLO
HELL

HEL

HE

H

#include <stdio.h>
#include <string.h>

8. Develop a C program to print the following pattern.

int main() {
char str[] = "HELLO";
int len = strlen(str);

// Upper half of the pattern
for(inti=0;i<len;i++) {
for(intj=0; j <=1 j++) {
printf("%c ", str[j]);

}
printf(*\n");
}

Page 14 of

/I Lower half of the pattern
for(inti=len-1;i>0;i-){
for(intj=0;j<i; j++) {
printf("%c ", str[j]);

}
printf("\n");

return O;

9. Define function. With an example code, explain the following:
I. Function Declaration ii. Function Definition
iil. Function Call iv. Argument Passing

A function in C is a block of code that performs a specific task. It helps in code reusability, modular
programming, and better readability.

A function in C consists of:

Function Declaration (Prototype)

Function Definition

Function Call

Argument Passing (Call by Value / Call by Reference)

N

Example Program

Below is a C program that demonstrates function declaration, function definition, function call, and
argument passing.

#include <stdio.h>

/I Function Declaration (Prototype)
int addNumbers(int a, int b);

int main() {
int numl = 10, num2 = 20, result;

{// Function Call
result = addNumbers(numl, num2);

// Display result
printf("Sum: %d\n", result);

return O;

¥

/! Function Definition

Page 15 of

int addNumbers(int a, int b) {
return a + b; // Returns sum of two numbers

¥

Explanation of Concepts

1. Function Declaration (Prototype)

e Syntax:

. return_type function_name(parameter_list);

e It tells the compiler about the function’s name, return type, and parameters before it is
defined.

e Example in the program:

int addNumbers(int a, int b);

2. Function Definition

Syntax:
return_type function_name(parameter_list) {
/l Function body
}
It contains the actual implementation of the function.
Example in the program:
int addNumbers(int a, int b) {
returna+ b;

by

This function takes two integers as input and returns their sum.

3. Function Call

A function is called in the main() function or another function.
Example in the program:
result = addNumbers(huml, num2);
The function addNumbers(num1, numz2) is called, and the returned value is stored in result.

4. Argument Passing
C functions can receive values using parameters. There are two types of argument passing:

1. Call by Value: (Used in the example above)
o Acopy of the argument is passed to the function.
o Any changes inside the function do not affect the original values.
2. Call by Reference: (Uses pointers)
o Instead of passing a copy, the function receives the actual memory address.

10. What are the different categories of functions? Write a C-program using
function to generate the Fibonacci series.

There are two types of functions in C
e Library Functions(Built-in)
These functions are provided by the system and stored in library; therefore it is
also called ‘Library Functions®.
e.g. scanf(), printf(), strcpy, strlwr, strcmp, strlen, strcat etc.

Page 16 of

To use these functions, we need to include the appropriate C header files.
e User Defined Functions
These functions are defined by the user at the time of writing the program. It
reduces the complexity of a big program and optimizes the code.
Types of User-defined functions:
1.C function with arguments (parameters) and with return value.
2.C function with arguments (parameters) and without return value.
3.C function without arguments (parameters) and without return value.
4.C function without arguments (parameters) and with return value.

#include <stdio.h>

/l Recursive Fibonacci function
int fibonacci(int n) {
if (n<=1)
return n;
return fibonacci(n - 1) + fibonacci(n - 2);

¥

int main() {
int n;

printf("Enter the number of terms: ");
scanf("%d", &n);

printf("Fibonacci Series:);

for (inti=0;i<n;i++) {
printf("%d ", fibonacci(i));

}

printf("\n");

return O;

Page 17 of

	Internal Assessment Test I – Feb 2025
	Single line comment
	Multi-line comment
	Section 1.Preprocessor Directive section
	Section 2: Global declaration Section
	Section 3: Function Section
	Compiling
	Linking
	Executing
	Uses of switch Statement:
	Syntax of switch Statement:
	Categories of Preprocessor Directives
	i. Macro Substitution Directives (#define)
	ii. File Inclusion Directives (#include)
	iii. Conditional Compilation Directives (#ifdef, #ifndef, #if, #else, #endif)

	Example Program Using Preprocessor Directives
	1. for Loop
	2. while Loop
	3. do-while Loop
	Use of break and continue Statements in Loops
	1. break Statement
	2. continue Statement

	7. Discuss any 5 string library functions with syntax . Write a C program to copy one string to another without using built in function. Five String Library Functions in C
	1. strlen() - Find Length of a String
	2. strcpy() - Copy One String to Another
	3. strcmp() - Compare Two Strings
	4. strcat() - Concatenate Two Strings
	5. strrev() - Reverse a String (Non-Standard)

	C Program to Copy One String to Another Without Using strcpy()
	Example Program
	Explanation of Concepts
	1. Function Declaration (Prototype)
	2. Function Definition
	3. Function Call
	4. Argument Passing

