
Page 1 of 9

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – Feb 2025

Sub: Database Management Systems
Sub

Code:
MMC103

Date: 06.02.25 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS
OBE

CO RBT

1 Explain the three-schema architecture of a DBMS with a neat diagram. Discuss the importance
of each schema layer in managing database systems.

OR

[5+5]
CO1 L1

2 Define the concept of keys in a relational database. Explain the differences between candidate
keys, primary keys, and foreign keys with examples.

[4+6]
CO1 L2

3

PART II
A library database has the following tables: Books(BookID, Title, Author, Genre),
Members(MemberID, Name, Age) and BorrowedBooks(MemberID, BookID).
Apply relational algebra and find the following:

i. Retrieve all books in the "Education" genre.

ii. Find all unique members who have either borrowed a book or are registered as
library members.

iii. Retrieve the titles of books that have not been borrowed.
OR

[3+4+3]

CO2 L3

4

Draw an ER diagram for a university system with the following specifications:
• Entities: Employees, Departments, Projects, Equipments.
• Relationships: Employees work in Departments, Departments manage Projects,

Employees are assigned to Projects, Projects use Equipment.

[10]

CO3 L3

5

PART III
Explain aggregate functions with examples. Consider the following schema: Student (usn, name,
DOB, branch, mark1, mark2, mark3, total, GPA). Write SQL query to find the maximum GPA score
of the student branch-wise.

OR

[5+5]
CO3 L3

6 What is a trigger? Explain with the syntax of a trigger. Write a trigger named LogSalaryUpdate
that logs every salary update in the table AuditLog (ActionID, ActionType, EmployeeID,
ActionTime).

[4+6]
CO3 L3

7

PART IV
You have an Employee table with the following columns: EmployeeID, Name, Dept_Name, and
Salary. Create a view named HighEarningEmployees that includes only employees with a salary
greater than 70,000. Write a query to display all data from the HighEarningEmployees view.

OR

[10]

CO3 L3

8

You have the following tables: Student(StudentID, Name, Age, Major), Course(CourseID,
CourseName, Credits) and Enrollment(StudentID, CourseID, Grade). Create and test a procedure
named CalculateAverageGrade that calculates the average grade for a specific student. The
procedure should accept the StudentID as input and print the average grade.

[10]

CO3 L3

9

PART V
What is functional dependency? Explain partial dependency and transitive dependency using
examples.

OR

[2+4+4]
CO1 L2

10 Explain 3NF with an example. How does it differ from BCNF? Why is 3NF preferred in some cases? [4+3+3] CO2 L2

Page 2 of 9

1 Explain the three-schema architecture of a DBMS with a neat diagram. Discuss the importance of each schema layer in
managing database systems.

The three-schema architecture of a Database Management System (DBMS) is a framework designed to separate the user’s
view of the database from the physical storage. It helps in managing data abstraction and independence, making
databases more flexible and easier to maintain. The architecture consists of three layers: Internal Schema, Conceptual
Schema, and External Schema.

1. Internal Schema (Physical Level):
This is the lowest level, dealing with how data is physically stored in the database. It includes storage details, indexing,
data compression, and access paths. The internal schema ensures efficient data storage and retrieval while managing
physical data structures.

2. Conceptual Schema (Logical Level):
The middle layer provides a logical view of the entire database, focusing on data structure, relationships, constraints, and
security without considering how the data is stored. It represents the core of the database design and defines what data is
stored and how it’s interrelated.

3. External Schema (View Level):
The top layer defines how different users interact with the database through customized views. It allows multiple user-
specific views without altering the conceptual schema, ensuring data security and simplifying user interaction.

Importance of Each Schema Layer:
Internal Schema: Optimizes data storage, performance, and access efficiency.
Conceptual Schema: Maintains data consistency, integrity, and logical structure.
External Schema: Provides data abstraction, security, and tailored user experiences.

This architecture promotes data independence, allowing changes in one layer without affecting others, thus enhancing
database management flexibility.

2 Define the concept of keys in a relational database. Explain the differences between candidate keys, primary keys, and
foreign keys with examples.

Concept of Keys in a Relational Database
In a relational database, keys are crucial constraints used to uniquely identify rows (or tuples) in a table. They ensure data
integrity and help maintain relationships between different tables. Keys can be classified into various types, with each
serving a specific purpose in database design.

1. Candidate Keys
A candidate key is a minimal set of attributes that can uniquely identify each record in a table. A table can have multiple
candidate keys, but none of them should have redundant attributes.

Example:
Consider a Student table:

In this table: StudentID, Email, and PhoneNumber can all uniquely identify a student, making them candidate keys.

Page 3 of 9

2. Primary Key
A primary key is a specific candidate key chosen to uniquely identify records in a table. It must contain unique values and
cannot have NULL values.

Example:
Using the same Student table, if we choose StudentID as the unique identifier, it becomes the primary key:
PRIMARY KEY (StudentID)
This ensures no two students can have the same StudentID, and it cannot be NULL.

3. Foreign Key
A foreign key is an attribute in one table that refers to the primary key in another table. It establishes a relationship
between two tables, ensuring referential integrity.

Example:
Consider a CourseEnrollment table:

Here:

StudentID in CourseEnrollment is a foreign key that references StudentID (the primary key) in the Student table.
FOREIGN KEY (StudentID) REFERENCES Student(StudentID)
This ensures that only existing students can enroll in courses.

✅ Key Differences

🎯 Conclusion
Candidate Keys: Potential unique identifiers.
Primary Key: The chosen candidate key to enforce uniqueness.
Foreign Key: Maintains relationships between tables.
Together, these keys play a vital role in ensuring data consistency, integrity, and efficient querying in relational databases.

3 A library database has the following tables: Books(BookID, Title, Author, Genre), Members(MemberID, Name, Age) and
BorrowedBooks(MemberID, BookID).
Apply relational algebra and find the following:

i. Retrieve all books in the "Education" genre.

ii. Find all unique members who have either borrowed a book or are registered as library members.

iii. Retrieve the titles of books that have not been borrowed.

Page 4 of 9

4

Draw an ER diagram for a university system with the following specifications:
• Entities: Employees, Departments, Projects, Equipments.

• Relationships: Employees work in Departments, Departments manage Projects, Employees are assigned to
Projects, Projects use Equipment.

5

Explain aggregate functions with examples. Consider the following schema: Student (usn, name, DOB, branch, mark1,
mark2, mark3, total, GPA). Write SQL query to find the maximum GPA score of the student branch-wise.

Aggregate Functions in SQL:
Aggregate functions perform calculations on a set of values and return a single summarized result. They are often used
with the GROUP BY clause to group rows that share the same values in specified columns. Common aggregate
functions include:

1. COUNT() - Returns the number of rows.
2. SUM() - Calculates the total sum of a numeric column.
3. AVG() - Computes the average of numeric values.
4. MAX() - Finds the maximum value in a column.
5. MIN() - Retrieves the minimum value in a column.

Example Using the Student Schema
Table: Student

Page 5 of 9

Attributes: usn, name, DOB, branch, mark1, mark2, mark3, total, GPA

SQL Query to Find the Maximum GPA Score Branch-wise: SELECT branch, MAX(GPA) AS Max_GPA FROM Student
GROUP BY branch;
Explanation:
SELECT branch, MAX(GPA): Retrieves the branch name and the maximum GPA for each branch.
AS Max_GPA: Assigns an alias to the output column for better readability.
FROM Student: Specifies the table to query.
GROUP BY branch: Groups the data based on the branch column so that MAX(GPA) is calculated for each branch
separately.

6 What is a trigger? Explain with the syntax of a trigger. Write a trigger named LogSalaryUpdate that logs every salary
update in the table AuditLog (ActionID, ActionType, EmployeeID, ActionTime).

Trigger in SQL
A trigger is a special type of stored procedure that automatically executes (or fires) in response to specific events on a
table or view. These events include INSERT, UPDATE, or DELETE operations. Triggers are used to maintain data
integrity, enforce business rules, and log audit information.

Syntax of a Trigger
CREATE TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF}
{INSERT | UPDATE | DELETE}
ON table_name
FOR EACH ROW
BEGIN
 -- Trigger logic here
END;

CREATE TRIGGER: Defines a new trigger.
BEFORE / AFTER / INSTEAD OF: Specifies when the trigger should fire:
BEFORE: Executes before the triggering operation.
AFTER: Executes after the triggering operation.
INSTEAD OF: Replaces the triggering operation (used with views).
INSERT / UPDATE / DELETE: Defines the triggering event.
FOR EACH ROW: Indicates the trigger will execute once for each affected row.
Trigger Logic: The SQL statements to be executed when the trigger fires.

Example: Trigger to Log Salary Updates
Objective: Create a trigger named LogSalaryUpdate that logs every salary update in the AuditLog table.

Table Definitions:
-- Employee Table
CREATE TABLE Employee (
 EmployeeID INT PRIMARY KEY,
 Name VARCHAR(100),
 Salary DECIMAL(10, 2)
);

-- AuditLog Table
CREATE TABLE AuditLog (
 ActionID INT PRIMARY KEY AUTO_INCREMENT,
 ActionType VARCHAR(50),
 EmployeeID INT,
 ActionTime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

Trigger:
CREATE TRIGGER LogSalaryUpdate AFTER UPDATE ON Employee FOR EACH ROW BEGIN -- Check if the Salary has
changed IF OLD.Salary <> NEW.Salary THEN INSERT INTO AuditLog (ActionType, EmployeeID, ActionTime) VALUES
('Salary Update', NEW.EmployeeID, NOW()); END IF; END;

Page 6 of 9

7

You have an Employee table with the following columns: EmployeeID, Name, Dept_Name, and Salary. Create a view
named HighEarningEmployees that includes only employees with a salary greater than 70,000. Write a query to display
all data from the HighEarningEmployees view.

Creating a View: HighEarningEmployees
A view in SQL is a virtual table based on the result of a SELECT query. It helps simplify complex queries, improve
security, and present data in a specific format without duplicating it.

CREATE VIEW HighEarningEmployees AS SELECT EmployeeID, Name, Dept_Name, Salary FROM Employee WHERE
Salary > 70000;

SELECT * FROM HighEarningEmployees;

This view filters the Employee table to include only those employees whose salary is greater than 70,000. The SELECT *
FROM HighEarningEmployees; query then retrieves all records from this view.

8

You have the following tables: Student(StudentID, Name, Age, Major), Course(CourseID, CourseName, Credits) and
Enrollment(StudentID, CourseID, Grade). Create and test a procedure named CalculateAverageGrade that calculates
the average grade for a specific student. The procedure should accept the StudentID as input and print the average
grade.

CREATE PROCEDURE CalculateAverageGrade(IN student_id INT)
BEGIN
 DECLARE avg_grade DECIMAL(5,2);
 -- Calculate the average grade for the given student
 SELECT AVG(Grade) INTO avg_grade FROM Enrollment WHERE StudentID = student_id;
 -- Print the result
 IF avg_grade IS NOT NULL THEN
 SELECT CONCAT('The average grade for Student ID ', student_id, ' is: ', avg_grade) AS Result;
 ELSE
 SELECT 'No grades found for the given Student ID' AS Result;
 END IF;
END

CALL CalculateAverageGrade(101);

Explanation:

1. The procedure accepts a StudentID as an input parameter.
2. It calculates the average grade from the Enrollment table for the given StudentID.
3. If the student has grades recorded, it prints the average grade.
4. If no grades exist for that student, it prints a message stating that no grades were found.

9

What is functional dependency? Explain partial dependency and transitive dependency using examples.

Functional dependency is a relationship between attributes in a relational database. It states that if two tuples (rows)
have the same values for a set of attributes XXX, then they must also have the same values for another set of attributes
YYY. This is represented as:
X→YX \rightarrow YX→Y
Where:

• XXX is called the determinant.
• YYY is called the dependent.
• This means that the value of XXX uniquely determines the value of YYY.

Example of Functional Dependency
Consider a table Student:

StudentID Name Department Dept_HOD

101 Alice CS Dr. Smith

102 Bob IT Dr. Johnson

103 Charlie CS Dr. Smith

Here, Department → Dept_HOD is a functional dependency because each department has exactly one head of
department.

Partial Dependency

Page 7 of 9

A partial dependency occurs when a non-prime attribute (an attribute that is not part of the candidate key) is
functionally dependent on only a part of the primary key rather than the whole primary key. This usually happens in
tables with composite primary keys and is a violation of Second Normal Form (2NF).
Example of Partial Dependency
Consider a table Student_Course:

StudentID CourseID CourseName StudentName

1 C101 DBMS Alice

2 C102 OS Bob

3 C101 DBMS Charlie

• Primary Key: (StudentID, CourseID)
• Dependencies:

o {StudentID, CourseID} → CourseName (Valid, since CourseName depends on CourseID)

o StudentID → StudentName (Partial dependency, as StudentName depends only on StudentID and
not on the whole primary key)

This violates 2NF because StudentName depends only on StudentID and not on the full primary key {StudentID,
CourseID}.

 Solution: Split into two tables:
1. Student Table (StudentID, StudentName)
2. Course Table (CourseID, CourseName)

Transitive Dependency
A transitive dependency occurs when a non-prime attribute depends on another non-prime attribute instead of
depending directly on the primary key. This is a violation of Third Normal Form (3NF).
Example of Transitive Dependency
Consider a table Employee:

EmpID EmpName DeptID DeptName

1 Alice D01 HR

2 Bob D02 IT

3 Charlie D01 HR

• Primary Key: EmpID
• Dependencies:

o EmpID → DeptID (Valid, as each employee belongs to one department)

o DeptID → DeptName (Valid, as each department has one name)

o EmpID → DeptName (Transitive dependency, since DeptName is dependent on DeptID, which in
turn depends on EmpID)

This violates 3NF because DeptName is indirectly dependent on EmpID through DeptID.

 Solution: Split into two tables:
1. Employee Table (EmpID, EmpName, DeptID)
2. Department Table (DeptID, DeptName)

Key Differences Between Partial and Transitive Dependency

Feature Partial Dependency Transitive Dependency

Dependency Type Only on part of a composite primary key
On a non-key attribute via another non-key
attribute

Normalization
Violated

2NF 3NF

Example
StudentID → StudentName (ignoring
composite key)

EmpID → DeptName (indirect dependency)

Solution
Break into separate tables to remove partial
dependency

Break into separate tables to remove transitive
dependency

10 Explain 3NF with an example. How does it differ from BCNF? Why is 3NF preferred in some cases?

Third Normal Form (3NF) is a normalization technique used to reduce redundancy in relational databases. A table is
said to be in 3NF if:

It is in Second Normal Form (2NF).
It has no transitive dependencies—i.e., all non-key attributes must depend only on the primary key.
Example of 3NF

Page 8 of 9

Consider a table Employee:

Primary Key: EmpID
Functional Dependencies:

EmpID → DeptID ✅ (Valid, as each employee belongs to one department)

DeptID → DeptName ✅ (Valid, as each department has one name)

EmpID → DeptName ❌ (Transitive dependency, since DeptName is dependent on DeptID, which in turn depends on
EmpID)
Since DeptName is indirectly dependent on EmpID, it violates 3NF.

Solution: Convert to 3NF
To remove transitive dependency, we split the table into two:

Now, all non-key attributes depend only on the primary key.

Difference Between 3NF and BCNF
Boyce-Codd Normal Form (BCNF) is a stricter version of 3NF.

Consider a table Course_Instructor:

Candidate Keys: {CourseID, Instructor}
Functional Dependencies:
CourseID → Department (One course belongs to one department)
Instructor → Department (Each instructor belongs to one department)

Page 9 of 9

Since Instructor is not a primary key but determines Department, it violates BCNF.

✅ To fix this, we split it into two tables:

Course Table (CourseID, Instructor)
Instructor Table (Instructor, Department)

Why is 3NF Preferred Over BCNF in Some Cases?
While BCNF removes all redundancy, it sometimes results in more table joins, which can reduce query performance.
3NF is preferred when:

Some redundancy is acceptable for faster query execution.
There are functional dependencies that cannot be easily split without losing information.
The table has a single candidate key, making BCNF unnecessary.

