IISN					
UDIN					

USN

	Internal Assessment Test						
Sub:	Discrete Mathematics and Graph Theory	Sub Code:	MMC102	Branch:	nch: MCA		
Date:	18/03/2025Duration:90 minutesMax Marks:50) Sem / Sec:	IA	A&B			BE
	Note: Answer FIVE FULL Questions, choosing ONE full	question from	each part.	М	ARKS	CO	RBT
1	Define a tautology. Check whether $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p - contingency.$	$\rightarrow r$) is a tautolo	ogy, contradictio		[10]	CO1	L2
	OR						
2	(a) Define the logical connective 'disjunction' with its truth table(b) Write the converse, inverse and contrapositive of "If Gold is		en Oxygen is a g	gas."	[10]	CO1	L1
3	Write the negation of (ii) $\exists x, [p(x) \lor q(x)]$ (i) All Americans eat cheese bu (iii) $\exists x, [p(x) \lor q(x)] \to r(x)$ OR				[10]	CO1	L3
4	Give the direct and indirect proof of "If n is an odd integer	then n+9 is ar	n even integer.'	,	[10]	CO1	L2
5	Check whether the following argument is valid or not. "If t Mathematics or Economics. If my Economics professor is sick, Today is Tuesday and my Economics professor is sick. Therefor OR	I will not have	a test in Econor	nics.	[10]	CO1	L3

	Internal Assessment Test I	[– March 202	5				
Sub:	Discrete Mathematics and Graph Theory	Sub Code:	Code: MMC102 Bran		anch: MCA		
Date:	18/03/2025 Duration: 90 minutes Max Marks: 50	Sem / Sec:	IA	A&B			OBE
	Note: Answer FIVE FULL Questions, choosing ONE full q	uestion from	each part.	MA	RKS	CO	RBT
1	Define a tautology. Check whether $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow contingency.$	r) is a tautolo	ogy, contradictic		10]	CO1	L2
2	(a) Define the logical connective 'disjunction' with its truth table.(b) Write the converse, inverse and contrapositive of "If Gold is a	compound the	en Oxygen is a g	gas." [10]	CO1	L1
3	Write the negation of (ii) $\exists x, [p(x) \lor q(x)]$ (i) All Americans eat cheese bur (iii) $\exists x, [\{p(x) \lor q(x)\} \to r(x)]$ OR			[10]	CO1	L3
4	Give the direct and indirect proof of "If n is an odd integer	hen n+9 is ar	n even integer.'	" [10]	CO1	L2
5	PART III Check whether the following argument is valid or not. "If to Mathematics or Economics. If my Economics professor is sick, I Today is Tuesday and my Economics professor is sick. Therefore OR	will not have	a test in Econor	nics.	10]	CO1	L3

Internal Assessment Test II – March 2025

6	Using laws of logic, prove (i) $[(p \lor q) \land (p \lor \sim q)] \lor q \Leftrightarrow p \lor q$. (i) $[p \to (q \land r)] \Leftrightarrow [(p \to q) \land (p \to r)]$	[10]	CO1 L3
7	PART IV Let A={1, 2, 3, 4, 6} and R be the relation on A defined by 'xRy if and only if x divides y'. Write down R as a set of ordered pairs. Draw the digraph of R. Find in-degree and out- degree of each vertex. Is this relation R symmetric? OR	[10]	CO3 L2
8	Define Simple Digraphs, Symmetric Digraphs, Asymmetric Digraphs, Graph Coloring and Chromatic Number with an example for each.	[10]	CO3 L1
	PART V		
9	 (a) Find the Chromatic polynomial and Chromatic number for the cycle C₄ of length 4. (b) Find the Chromatic number of the complete bipartite graph K_{3,3}. 	[10]	CO4 L3
	OR		
10	(a) Write down the Chromatic polynomial of a Null graph, Path and Complete graph with n vertices.(b) Explain Four Color Problem.	[10]	CO4 L3

6	Using laws of logic, prove (i) $[(p \lor q) \land (p \lor \sim q)] \lor q \Leftrightarrow p \lor q$. (ii) $[p \to (q \land r)] \Leftrightarrow [(p \to q) \land (p \to r)]$	[10]	CO1	L3
7	PART IV Let A={1, 2, 3, 4, 6} and R be the relation on A defined by 'xRy if and only if x divides y'. Write down R as a set of ordered pairs. Draw the digraph of R. Find in-degree and out- degree of each vertex. Is this relation R symmetric? OR	[10]	CO3	L2
8	Define Simple Digraphs, Symmetric Digraphs, Asymmetric Digraphs, Graph Coloring and Chromatic Number with an example for each.	[10]	CO3	L1
9	PART V (a) Find the Chromatic polynomial and Chromatic number for the cycle C_4 of length 4. (b) Find the Chromatic number of the complete bipartite graph $K_{3,3}$. OR	[10]	CO4	L3
10	(a) Write down the Chromatic polynomial of a Null graph, Path and Complete graph with n vertices.(b) Explain Four Color Problem.	[10]	CO4	L3

MMCID2 . IAT2 Discrete Maths & Graph Theory A compound proposition which is always false regardiers of truth 1. values of its components is called a Tautology. $p \rightarrow q \quad q \rightarrow r \quad (p \rightarrow q) \land (q \rightarrow m) \quad p \rightarrow r \quad (cp \rightarrow q) \land (q \rightarrow m) = (p \rightarrow r)$ O 0 0 0 О 0 0 0 0 n Since all the entries of the last column are 1.5, the given compound proposition is a tautology. 2(a) A compound proposition obtained by insenting the word "OR" between two propositions is called a disjunction. If p and q are two propositions then. "por q" is denoted by "pvq". PV9 P 9 0 0 0 C 0

2(b) Let p: Gold is a compound

$$q: 0xygen is a gas.$$

Green $p \rightarrow q$
 $Onvouve: q \rightarrow P$
 $e., Tj exygen is a gas then Gold is a compound.$
 $Invouse: \neg p \rightarrow \neg q$
 $ie., Tj Cold is not a compound then oxygen is not agas.$
 $ie., Tj Cold is not a compound then oxygen is not agas.$
 $Onthapositive: \neg q \rightarrow \neg p$
 $k., Tj Oxygen is not a gas then Gold is not a compound.$
 $ie., Tj Oxygen is not a gas then Gold is not a compound.$
 $given \forall x, p(x)$
 $vegation: \neg [\forall x, p(x)]$
 $ie., some Americans do not eat cheese burgers.$
 $(i) Neg^{\circ} \neg [\exists x, [kai vq(x)]]$
 $\Leftrightarrow \forall x, \neg p(x) \land \neg q(x)$
 $ie. \forall x, n = [ip(x) vq(x)] \rightarrow \tau(x)]$
 $ie. \forall x. \neg [ip(x) vq(x)] \rightarrow \tau(x)$

4. Let p:n is an odd integer. 9: n+9 is an even integer. Given P->9 Diffect Prov Assume p is true. => n is an odd integer. => n = 2k+1 ; kGZ \Rightarrow n+9 = ak+1+9 = ak+10 = a(k+5) = al which is even. => q is true. :. p->q is true. Indirect Proof: What $p \rightarrow q \iff \neg q \rightarrow \neg P$ Assume -19 is true. \Rightarrow n+9 is odd => n+9 = 2k+1 =) n = ak - 8 = a(k - 4) = al which is even. > -> pistnue. Hence, -19 -> -1 p is true. 5. Let p: Today is Tuesday 9: I have a test in maths r: I have a test in Economics. s: My Economics Professor is sick. Gren, p -> (qAr). 8-3 72 PIS

 $\begin{array}{ccc} P \rightarrow (quar) & q \lor r & models for I & II premises \\ s \rightarrow 7r & =) & 7r & -n & - II & II \\ p & conjunctive & -n & - II & II \\ \hline s & simp^{n} & i.q \\ \hline i.q \end{array}$

$$(=) \quad \neg q \rightarrow r$$
$$\frac{\neg r}{\cdot q}$$

This is a valid argument in view of modus Tollens.

5. (i) LHS =
$$[CPVq) \wedge (PV \neg q)] \vee q$$

 $\iff [PV(q \land \neg q)] \vee q$ Distributive property

 $\Leftrightarrow (p \vee F_0) \vee q$ $\Leftrightarrow p \vee q = RHS$ Inverse law

- (ii) $[p \rightarrow (q \Lambda r)]$ using $\Rightarrow \neg p \lor (q \Lambda r)$ $p \rightarrow q \Leftrightarrow \neg p \lor q$
- $(\Rightarrow (\neg p \lor q) \land (\neg p \lor \gamma) \quad d\text{Distributive law}$ $(\Rightarrow (p \rightarrow q) \land (p \rightarrow \gamma) \quad using p \rightarrow q (\Rightarrow \neg p \lor q)$

7.

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (3, 3), (3, 6),$$

ee

(1,2) ER. But (2,1) &R

If a divides b then b doesn't divide a for a =6.

 $fe., (a,b) \in \mathbb{R} \implies (b,a) \notin \mathbb{R}$

Hence, R is not symmetric.

Simple Dignaphy: A digraph that has no self-loop or parallel edges is called a simple digraph.

8

Asymmetric Digraph: Digraphs that have at most one directed edge between a pair of vertices, but are allowed to have self loops are called asymmetric. Eq: A_{B} Symmetric Digraph: Digraphs in which for every edge (a,b) there is also an edge (b,a) is called symmetric digraph A digraph that is both simple & symmetric is called a

39 - Asha KN Graph Coloring Given a planar or non-planar graph G, if we arsign colours to its vertices in such a way that no two adjacent vertices have the same color, then we say that the graph & is properly colored. (Proper coloring of a graph means arsigning colors to its vertices such that adjacent vertices have different colours.) Gneen Red Red Gnee Eg: Blue Green Red Blue Green Blue These two are properly colored.

21

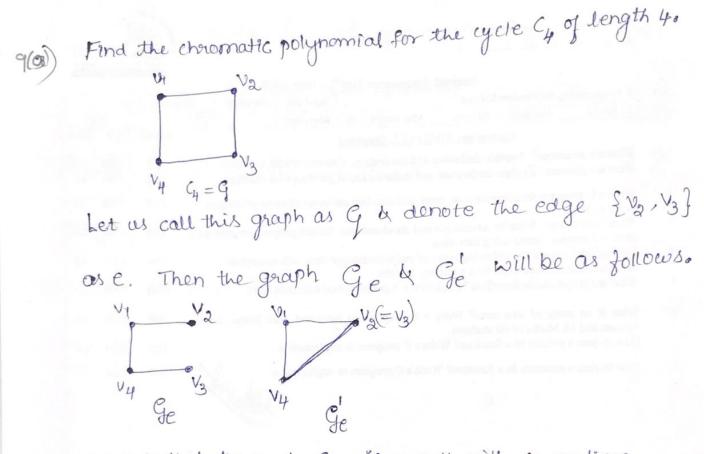
Chromatte Number

A graph G is said to be k-colorable if we can properly color it with k colors.

A graph & which is k-colorable, but not (k-1)-colorable is called a k-chromatic graph.

(A k-chromatic graph is a graph that can be properly colored with k colors but not with less than K colors.) If a graph G is k-chromatic, then k is called the

chromatic number of G& is usually denoted by X (G).

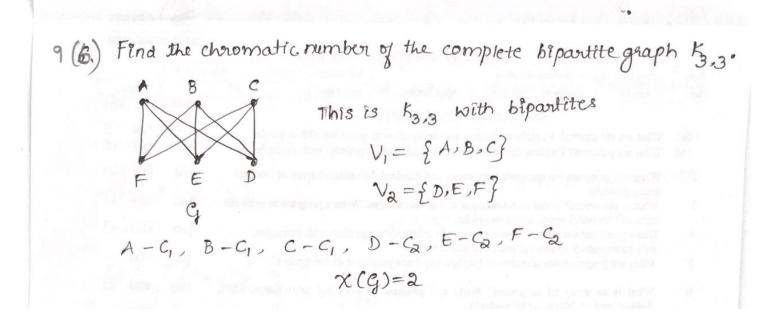


we note that the graph ge is a path with 4 vertices.

Thursdore, $P(g_{e}, \lambda) = \lambda(\lambda - 1)^{3}$ Also G'_{e} is complete graph with 3 vertices. $P(G'_{e}, \lambda) = \lambda(\lambda - 1)(\lambda - 2)$ Using Decomposition theorem, $P(c_{4}, \lambda) = P(G, \lambda) = P(G_{e}, \lambda) - P(G'_{e}, \lambda)$ $= \lambda(\lambda - 1)^{3} - \lambda(\lambda - 1)(\lambda - 2)$ $= \lambda(\lambda - 1) [(\lambda - 1)^{2} - (\lambda - 2)]$ $= \lambda(\lambda - 1) [\lambda^{2} - 2\lambda + 1 - \lambda + 2]$ $= (\lambda^{2} - \lambda) ((\lambda^{2} - 3\lambda + 3))$

$$= 24 - 33^{3} + 32^{2} - 3^{3} + 32^{2} - 32$$

This is the chromatic polynomial for the given circle.



10(a) (i) $P(N_n, \lambda) = \lambda^n$ where N_n is a null graph with n vertices.

(ii)
$$P(k_n, \lambda) = 0$$
 if $\lambda < h$
 $= 1$ if $\lambda = h$
 $= \lambda (\lambda - 1) (\lambda - 2) \cdots (\lambda - n + 1)$ if $\lambda > n$.
 $= \lambda (\lambda - 1) (\lambda - 2) \cdots (\lambda - n + 1)$ if $\lambda > n$.
 $K_n - complete graph with n vertices.$
(iii) $P(L_n, \lambda) = \lambda (\lambda - 1)^{n-1}$ if $\lambda \ge 2$.
Where L_n is a path consisting of
 M vertices.

(106) Four color Mission Problem: Having proved that every simple connected planar graph is properly colorable with 5 colors, the question arcses: Is it possible to properly color such a graph with just 4 colors? This question is possed in 1852 and was called Four Color Problem. This problem sumained consolved for over a century. This question was eventually settled by two American mathematicians, Kenneth Appel and Wolfgang Haken in 1976. They proved the the following theorem, now known as the "Four color Theorem": Every simple, connected planar graph is 4-colorable. This is equivalent to saying that every map earbe properly colored with just sour colors.