
Page 1 of 8

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2 – Mar 2025

Sub: Database Management Systems Sub Code: MMC103

Date: 19.03.25 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS
OBE

CO RBT

1 Draw a complete ER diagram for a Hospital Management System (Entities are Patient, Doctor,

Appointment and Prescription).

OR

[10]

CO1 L3

2 What is relational algebra? Explain each of its operations with an example. [2+8] CO1 L2

3

PART II

Write a trigger that fires before an INSERT operation in the orders table when order amount

exceeds $10,000, else raise an error or prevent the insertion to enforce the business rule.

OR

[10]

CO3 L3

4 a. What is nested subquery? What are the types of subqueries? Explain with example.

b. A table has customer data (Customer_No, Name, Age, Phone, Email, Address). Write a query to

print the customer’s name having minimum age.

[2+4+4]

CO3 L3

5

PART III

What are functional dependencies? Explain trivial, semi non-trivial and transitive functional

dependencies with examples.

 OR

[2+2+3+3]

CO2 L2

6 What is lossless decomposition? Discuss its advantages and disadvantages. [4+6]
CO1 L1

7

PART IV

Discuss ACID properties. Explain the transaction isolation levels

 OR

[5+5]

CO1 L1

8

What is serializability? How do you detect it? What are its types? Explain with examples [10] CO1 L2

9

PART V

What is checkpoint? Explain its benefits. How can a log file help in recovering a database?

 OR

[2+3+5] CO1 L1

10 How does recovery with concurrent transactions work? How can we deal with failure with loss

of non-volatile storage

[5+5] CO1 L1

Page 2 of 8

Answers:

1. Draw a complete ER diagram for a Hospital Management System (Entities are Patient, Doctor, Appointment and Prescription).

2. What is relational algebra? Explain each of its operations with an example.

Relational Algebra is a procedural query language used to retrieve data from relational databases. It defines a set of operations

that take one or more relations (tables) as input and produce a new relation as output.

Basic Relational Algebra Operations

1. Selection (σ)

• Definition: Filters rows (tuples) based on a given condition.

• Notation: σ_condition (Relation)

• Example: Retrieve students with age greater than 20.

σ Age > 20 (Student)

• Result: Returns only those rows where Age > 20.

2. Projection (π)

• Definition: Selects specific columns (attributes) from a relation.

• Notation: π_column1, column2, ... (Relation)

• Example: Retrieve only Student Names and Ages.

π Name, Age (Student)

• Result: Returns a table with only the selected columns.

3. Union (∪)

• Definition: Combines tuples from two relations, removing duplicates.

• Notation: Relation1 ∪ Relation2

• Example: Retrieve students enrolled in either Course A or Course B.

Enrolled_A ∪ Enrolled_B

• Result: Returns unique tuples present in either relation.

4. Set Difference (−)

• Definition: Retrieves tuples from the first relation that are not in the second relation.

• Notation: Relation1 - Relation2

• Example: Find students in Course A but not in Course B.

Enrolled_A − Enrolled_B

Page 3 of 8

• Result: Returns tuples present in Enrolled_A but not in Enrolled_B.

5. Cartesian Product (×)

• Definition: Combines all tuples of one relation with all tuples of another.

• Notation: Relation1 × Relation2

• Example: Combine Student and Course relations.

Student × Course

• Result: Produces all possible combinations of students and courses.

6. Join (⨝)

• Definition: Combines two relations based on a related attribute.

• Notation: Relation1 ⨝ condition Relation2

• Example: Retrieve students along with the courses they are enrolled in.

Student ⨝ Student.StudentID = Enrollment.StudentID Enrollment

• Result: Returns only matching tuples from both relations.

7. Division (÷)

• Definition: Finds tuples from the first relation that are related to all tuples in the second relation.

• Notation: Relation1 ÷ Relation2

• Example: Find students who have taken all required courses.

Enrolled ÷ Required_Courses

• Result: Returns students who are enrolled in every course listed in Required_Courses.

3. Write a trigger that fires before an INSERT operation in the orders table when order amount exceeds $10,000, else raise an

error or prevent the insertion to enforce the business rule.

CREATE TRIGGER before_order_insert

BEFORE INSERT ON orders

FOR EACH ROW

BEGIN

 -- Check if the order amount exceeds $10,000

 IF NEW.order_amount > 10000 THEN

 SIGNAL SQLSTATE '45000'

 SET MESSAGE_TEXT = 'Order amount exceeds the permitted limit of $10,000.';

 END IF;

END

4. a. What is nested subquery? What are the types of subqueries? Explain with example.

b. A table has customer data (Customer_No, Name, Age, Phone, Email, Address). Write a query to print the customer’s name

having minimum age.

a. A nested subquery is a subquery (a query inside another query) that is executed before the outer query and provides results to it.

The inner query runs first and its output is used by the outer query to perform further operations.

Example of Nested Subquery

Let's consider two tables:

• Employees (EmpID, Name, Salary, DeptID)

• Departments (DeptID, DeptName)

If we want to find employees who earn more than the average salary of all employees, we can use a nested subquery:

SELECT Name, Salary

FROM Employees

WHERE Salary > (SELECT AVG(Salary) FROM Employees);

 The inner query (SELECT AVG(Salary) FROM Employees) calculates the average salary.

 The outer query selects employees whose salary is greater than this average.

Types: correlated and uncorrelated.

Correlated example:

SELECT Name, Salary, DeptID

FROM Employees E1

WHERE Salary > (SELECT AVG(Salary) FROM Employees E2 WHERE E1.DeptID = E2.DeptID);

b. SELECT Name

FROM Customers

WHERE Age = (SELECT MIN(Age) FROM Customers);

5. What are functional dependencies? Explain trivial, semi non-trivial and transitive functional dependencies with examples.

Page 4 of 8

A functional dependency is a constraint that specifies the relationship between attributes in a relational database. It expresses

how one set of attributes uniquely determines another set.

Definition:

If X and Y are two sets of attributes in a relation R, then X → Y (X determines Y) means that for every unique value of X, there is

only one corresponding value of Y.

Types of Functional Dependencies

1. Trivial Functional Dependency

A functional dependency X → Y is trivial if Y is a subset of X.

Example:

Consider a relation Student (RollNo, Name, Age)

• {RollNo, Name} → Name is a trivial FD because Name is already part of {RollNo, Name}.

General Rule:

A functional dependency is trivial if it does not add new information to the relation.

2. Semi Non-Trivial Functional Dependency

A semi non-trivial functional dependency X → Y is where Y is not a subset of X, but part of Y is contained in X.

Example:

Consider a relation Employee (EmpID, Name, Dept, Salary)

• {EmpID, Dept} → {Dept, Salary}

o Here, {Dept} is already in {EmpID, Dept}, but {Salary} is new.

Thus, this dependency is semi non-trivial because it partially includes existing attributes.

3. Transitive Functional Dependency

A transitive functional dependency occurs when an attribute indirectly depends on another through a third attribute.

Example:

Consider a relation Employee (EmpID, DeptID, DeptName) where:

1. EmpID → DeptID (EmpID determines DeptID)

2. DeptID → DeptName (DeptID determines DeptName)

Since EmpID determines DeptID and DeptID determines DeptName, we get:

EmpID → DeptName (Transitive Dependency)

6. What is lossless decomposition? Discuss its advantages and disadvantages.

Lossless decomposition is a process in database normalization where a relation is decomposed into two or more smaller

relations without losing any information. It ensures that when the smaller relations are joined back using a natural join (⋈),

they reproduce the original relation without any data loss or spurious tuples.

Definition

A decomposition of a relation R into R1 and R2 is lossless if:

R1∩R2→R1 or R1∩R2→R2

This means that the common attributes must be a candidate key in at least one of the decomposed relations.

7. Discuss ACID properties. Explain the transaction isolation levels

In database systems, ACID properties ensure data integrity, consistency, and reliability during transactions. ACID stands for:

Page 5 of 8

1. Atomicity (All or Nothing)

• A transaction must be fully completed or fully rolled back if any part of it fails.

• Example: If you transfer ₹500 from Account A to Account B, both the debit from A and credit to B must happen

together. If the system crashes after debiting A but before crediting B, the transaction must be rolled back to ensure no

money is lost.

2. Consistency (Data Integrity)

• The database must remain in a valid state before and after a transaction.

• Example: If a transaction violates a foreign key constraint, it must be aborted to maintain consistency.

3. Isolation (Concurrent Transactions Should Not Interfere)

• Transactions should execute independently without affecting each other.

• Example: If two users withdraw money from the same account simultaneously, isolation ensures that the final balance

remains correct.

4. Durability (Permanent Changes)

• Once a transaction is committed, its changes are permanently stored, even in case of system failures.

• Example: If a power outage occurs after a successful ticket booking, the booking details must be retained after system

recovery.

8. What is serializability? How do you detect it? What are its types? Explain with examples

Serializability is a concept in database concurrency control that ensures the execution of multiple transactions is equivalent to

some serial (one-by-one) execution of those transactions.

It ensures data consistency in a concurrent execution environment by preventing anomalies such as dirty reads, lost updates,

and inconsistent retrievals.

Types of Serializability

1. Conflict Serializability

A schedule is conflict serializable if it can be transformed into a serial schedule by swapping non-conflicting operations.

Conflicting Operations:

Two operations in different transactions conflict if:

1. They operate on the same data item.

2. At least one of them is a write operation.

Example of Conflict Serializability:

Schedule S:

T1: Read(A)

T2: Write(A)

T1: Write(A)

Here, T1 and T2 are conflicting because both modify A. If we swap T1 and T2, we may get a different result, making it non-

conflict serializable.

✅ Conflict Serializable Schedule:

T1: Read(A), Write(A)

T2: Read(B), Write(B)

Since T1 and T2 operate on different data (A and B), they are not conflicting and can be swapped.

2. View Serializability

A schedule is view serializable if it produces the same final result as a serial schedule, even if operations are not conflict-

swappable.

Conditions for View Serializability:

A schedule is view serializable if:

1. Initial Reads Match: The first read in both schedules must be from the same transaction.

2. Intermediate Reads Match: Every transaction reads the same data as in a serial schedule.

3. Final Writes Match: The last write in both schedules must be from the same transaction.

Example of View Serializability:

T1: Read(A), Write(A)

T2: Read(A), Write(A)

Page 6 of 8

Even if swapping is not possible, if the final output is the same as a serial execution, it is view serializable.

Note: Every conflict serializable schedule is view serializable, but not every view serializable schedule is conflict serializable.

How to Detect Serializability?

1. Precedence Graph (Serializability Graph)

• Steps to construct a precedence graph:

1. Create a node for each transaction.

2. Draw a directed edge (Ti → Tj) if:

▪ Ti writes a data item before Tj reads/writes it.

▪ Ti reads a data item before Tj writes it.

3. If the graph has a cycle, the schedule is not serializable.

Example:

Schedule:

T1: Read(A)

T2: Write(A)

T1: Write(A)

T1 → T2 → T1 (Cycle detected ❌)

Since there's a cycle, it is not serializable.

✅ Serializable Schedule:

T1: Read(A), Write(A)

T2: Read(B), Write(B)

Graph: T1 → T2 (No cycle ✅)

This schedule is serializable.

9. What is checkpoint? Explain its benefits. How can a log file help in recovering a database?

A checkpoint is a mechanism in a database management system (DBMS) used to minimize the time required for recovery in case

of a system crash. It is a point where the DBMS ensures that all modified data (dirty pages) in memory are written to disk, and

all log records before this point are safely stored.

Benefits of Checkpoints

1. Reduces Recovery Time

o Instead of scanning the entire log, the system can start recovery from the latest checkpoint, making the

process much faster.

2. Minimizes Data Loss

o Ensures that committed transactions are safely written to disk, reducing the chances of data loss in case of a

crash.

3. Improves System Performance

o Reduces the overhead of maintaining large log files, improving overall system efficiency.

4. Efficient Log Management

o Older log records before the checkpoint can be discarded, preventing log files from growing indefinitely.

5. Prevents Redo of Committed Transactions

o Transactions committed before the checkpoint do not need to be redone, reducing recovery workload.

How Log Files Help in Database Recovery

A log file maintains a sequential record of all changes made to the database. During recovery, log records help restore the

database to a consistent state.

Types of Logging

1. UNDO Logging (Rollback)

o If a transaction fails, the system uses the log to revert uncommitted changes.

2. REDO Logging (Reapply Changes)

o Ensures committed transactions are reapplied if they were lost before being written to disk.

Steps in Database Recovery Using Log Files

1. Identify the Last Checkpoint

o Find the most recent checkpoint in the log.

2. REDO Phase (Reapply Committed Changes)

o Scan the log forward from the checkpoint and reapply committed transactions to restore lost updates.

3. UNDO Phase (Rollback Uncommitted Changes)

o Rollback uncommitted transactions by using the before-values stored in the log.

Page 7 of 8

Example of Log-Based Recovery

Before Crash (Log File)

T1: Start

T1: Write(A=500 → 600)

T2: Start

T2: Write(B=100 → 150)

Checkpoint

T1: Commit

T2: Write(B=150 → 200)

Crash!

Recovery Process

1. Start from Checkpoint

2. Redo T1 (Since it was committed)

3. Undo T2 (Since it was incomplete at the crash)

After recovery, the database is restored to a consistent state.

10. How does recovery with concurrent transactions work? How can we deal with failure with loss of non-volatile storage

Recovery with Concurrent Transactions

When multiple transactions execute concurrently, recovery must ensure that the database remains

consistent and transactions follow ACID properties (Atomicity, Consistency, Isolation, Durability). The

recovery system must handle concurrent transactions efficiently using log-based recovery and

synchronization techniques.

Steps for Recovery with Concurrent Transactions

1. Identify the Last Checkpoint

o Recovery starts from the most recent checkpoint in the log file.

2. REDO Phase (Reapply Committed Changes)

o Transactions that were committed before the crash are reapplied to ensure no data is lost.

3. UNDO Phase (Rollback Uncommitted Changes)

o Transactions that were not committed before the crash are rolled back to maintain

consistency.

Handling Concurrent Transactions in Recovery

• Write-Ahead Logging (WAL)

o Log changes before applying them to the database to ensure data is not lost.

• Strict Two-Phase Locking (2PL)

o Ensures transactions do not interfere with each other during recovery.

• ARIES (Algorithm for Recovery and Isolation Exploiting Semantics)

o A widely used recovery method that ensures proper handling of concurrent transactions using

log records and redo/undo logging.

Failure with Loss of Non-Volatile Storage

Non-volatile storage (like HDDs or SSDs) stores the database permanently. If this storage fails, the

database must be restored from backups and logs.

Ways to Handle Loss of Non-Volatile Storage

1. Backup & Restore Mechanism

Page 8 of 8

o Periodic backups (full, incremental, differential) ensure recovery even if storage is

completely lost.

o Cloud-based backups provide redundancy.

2. Replication & Mirroring

o Database replication maintains copies of data in different locations.

o RAID (Redundant Array of Independent Disks) provides data redundancy.

3. Shadow Paging

o Maintains a copy of data in a separate storage location, reducing dependency on a single

disk.

4. Redo Log from Remote Storage

o If logs are stored on a different non-volatile storage system, transactions can be redone

after restoration.

Recovery Process After Storage Loss

1. Restore from the latest backup

2. Apply all REDO logs stored externally

3. Rollback any incomplete transactions using UNDO logs

