

 Scheme of Evaluation

Internal Assessment Test 1 – March 2025

Sub: Operating Systems
Sub

Code:
MMC104

Date:
20-

03-

25 Duration: 90 mins
Max

Marks: 50
Sem: I

Bra

nch:
MCA

Q.NO Description Marks

Distri

bution

Max

Marks

1  Explain TLB with neat diagram

 Explanation of TLB

 Draw a TLB Architecture diagram

7

3

10

2 Mention the different page table structure. Explain it brief

 List out the different page table structure

 Explanation of each page table structure with neat diagrams

2

8

10

3 Describe about the Page replacement algorithm in detail notes

 Define Page Replacement Algorithm

 List out the Page Replacement Algorithm and also explain it

brief

 Give example of each Page Replacement Algorithm

2

6

2

10

4 Consider the following reference string:

6 1 1 2 0 3 4 6 0 2 1 2 1 2 0 3 2 1 4 0

How many page faults would occur in case of i)FIFO ii) LRU

iii)Optimal algorithm?

 Find out the solutions of page fault using FIFO,LRU and

Optimal page replacement algorithm

10

10

5 What is a deadlock? What are the necessary conditions for a deadlock

to occur?

 Definition of deadlock

 Give explain about the necessary conditions of deadlock



2

8

10

6 . With neat diagrams explain Resource Allocation graph.

 Explain concepts of RAG
 Draw the diagram of RAG

6

4

10

7 Write and explain about the Banker’s algorithm with an

example

 Explanation of Banker’s Algorithm

10

10

8

Consider the following

 Find out the solution of
need matrix

 Find out the solution of safe
sequence

4

6

10

9 What are the various methods used to access file?

 List out the methods used to access file
 Explain about the three methods in detail

2

8

10

10 Explain the VFS with a Schematic diagram

 Explanation of the VFS

 Draw the VFS Schematic diagram

7

3

10

Answer the

following

question: i)

Construct a need

matrix. ii) Is the

system in a safe

state? If yes what

is the safe

sequence? iii) If

process P1 makes

a request (1 0 2)

can the request be

granted?

Internal Assessment Test 2 – March 2025

Operating Systems Sub Code: MMC104

20/03/2025 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

PART I

1. Explain TLB with neat diagram
The hardware implementation of the page table can be done by using dedicated registers.

But the usage of the register for the page table is satisfactory only if the page table is

small.

If the page table contains a large number of entries then we can use TLB (translation

Look-aside buffer), a special, small, fast look-up hardware cache.

The TLB is an associative, high-speed memory.

Each entry in TLB consists of two parts: a tag and a value.

When this memory is used, then an item is compared with all tags simultaneously. If

the item is found, then the corresponding value is returned.

When a logical address is generated by the CPU, its page number is presented to the

TLB. If the page number is found, its frame number is immediately available and is used

to access memory.

If the page number is not in the TLB (known as a TLB miss), a memory reference to the

page table must be made. When the frame number is obtained, we can use it to access

memory. In addition, we add the page number and frame number to the TLB, so that they

will be found quickly on the next reference. If the TLB is already full of entries, the

operating system must select one for replacement. Replacement policies range from least

recently used (LRU) to random. Furthermore, some TLBs allow entries to be wired

down, meaning that they cannot be removed from the TLB. Typically, TLB entries for

kernel code are often wired down.

The percentage of times that a particular page number is found in the TLB is called the

hit ratio. An 80-percent hit ratio means that we find the desired page number in the TLB

80 percent of the time. If it takes 20 nanoseconds to search the TLB, and 100

nanoseconds to access memory, then a mapped memory access takes 120 nanoseconds

when the page number is in the TLB. If we fail to find the page number in the TLB (20

nanoseconds), then we must first access memory for the page table and frame number

(100 nanoseconds), and then access the desired byte in memory (100 nanoseconds), for a

total of 220 nanoseconds.

To find the effective memory-access time, we must weigh each case by its probability:

(Where P is Hit ratio)

EAT(effective access time) = P x hit memory time + (1-P) x miss memory time.

= 0.80 x 120 + 0.20 x 220

= 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory access time (from 100 to

140 ns).

For a 98-percent hit ratio, we have

EAT(effective access time)= P x hit memory time + (1-P) x miss memory time.

= 0.98 x 120 + 0.02 x 220

= 122 nanoseconds.

This increased hit rate produces only a 22-percent slowdown in access time.

Example:
What will be the EAT if hit ratio is 70%, time for TLB is 30ns and access to main

memory is 90ns?

P = 70% = 70/100 = 0.7

Hit memory time = 30ns + 90ns = 120ns

Miss memory time = 30ns + 90ns + 90ns = 210ns Therefore,

EAT = P x Hit + (1-P) x Miss

= 0.7 x 120 + 0.3 x 210

=840 + 63.0

=147 ns

2. Mention the different page table structure. Explain it brief

Structure of Page Table in Operating Systems

The data structure that is used by the virtual memory system in the operating system of a

computer in order to store the mapping between physical and logical addresses is commonly

known as Page Table. As we had already told you that the logical address that is generated by the

CPU is translated into the physical address with the help of the page table.

Thus page table mainly provides the corresponding frame number (base address of the frame)

where that page is stored in the main memory.

The above diagram shows the paging model of Physical and logical memory. Characteristics of

the Page Table Some of the characteristics of the

Page Table are as follows:

 It is stored in the main memory.

 Generally; the Number of entries in the page table = the Number ofPages in which the

process is divided.

 PTBR means page table base register and it is basically used to hold the base address for

the page table of the current process.

 Each process has its own independent page table.

Techniques used for Structuring the Page Table

Some of the common techniques that are used for structuring the Page table are as follows:

1. Hierarchical Paging

2. Hashed Page Tables

3. Inverted Page Tables

Let us cover these techniques one by one;

Multilevel or Hierarchical Page Table

• Page tables can consume a significant amount of memory.

• For example: A 32-bit virtual address space using 4 kB pages.

Page size = 212 bytes

Space for page numbers = 232 - 212

= 220 bytes

• So page table may consists of upto 1 million entries, one for each page, for a total

address capacity of about four billion bytes.

• Hierarchical page table is also called as forward mapped page table. This

approach is so effective that many modern operating systems employ it.

• In this method, each level containing a table that stores pointers to tables in the

level below. Each table in the hierarchy is the size of one page. It enables the

operating system to transfer page tables between main memory and secondary

storage device easily.

For two levels of page table

Virtual address contains page number and displacement into that page.

Virtual address (v) = (p, t, d)

Where (p, t)=Page number

d = Displacement

• Here p is an index into the outer page table.

• Fig. 4.6.1 shows hierarchical page table.

• Intel IA - 32 architecture support two levels of page

Advantages

1. It is compact and support sparse address space.

2. It easily manages the memory.

3. It reduces table fragmentation.

Disadvantages

1. Overhead due to one more page table.

2. On TLB miss, two loads from memory will be required to get the right address

translation information from the page table.

Hashed Page Tables

• Hashed page table support address space of 32 bits and more. Hash value is used

as virtual page number.

• Hash table contains a link list of elements. Each element consists of following

fields:

1. Virtual page number

2. Mapped page frame value.

3. Pointer to the next element. Hash table improves search speed.

Fig. 4.6.2 shows block diagram of hashed

Working

1. Virtual page number is taken from virtual address.

2. Virtual page number is hashed into the hash table.

3. Virtual page number is compared with the first element of linked list.

4. Both the value is matched, that value is (i.e. page frame) used for calculating

physical address.

5. If the both value is not matched, the entire linked list is searched for a matching.

• Clustered page table is same as hashed page table but only difference is that each

entry in the hash table refers to several pages.

Inverted Page Table

• It uses a page table that contains an entry for each physical frame. This ensures

that the page table occupies a fixed fraction of memory. The size is proportional to

the physical memory.

• Page table overhead increases with address space size. Page table get too big to

fit in memory.

• Inverted page table has one entry for each real page of memory. Lookup time is

increased because it requires a search on the inverted table.

• Logical address is as follows

• Inverted page table is used by Itanium, Power PC and Ultra SPARC.

PART II

3. Describe about the Page replacement algorithm in detail notes
Page Replacement technique uses the following approach. If there is no free frame, then

we will find the one that is not currently being used and then free it. A-frame can be freed

by writing its content to swap space and then change the page table in order to indicate

that the page is no longer in the memory.

1. First of all, find the location of the desired page on the disk.

2. Find a free Frame:

a) If there is a free frame, then use it.

b) If there is no free frame then make use of the page-replacement algorithm in order to

select the victim frame.

c) Then after that write the victim frame to the disk and then make the changes in the

page table and frame table accordingly.

3. After that read the desired page into the newly freed frame and then change the page

and frame tables.

4. Restart the process.

PAGE REPLACEMENT ALGORITHM
In an operating system that uses paging for memory management, a page replacement

algorithm is needed to decide which page needs to be replaced when a new page comes

in.

A page fault happens when a running program accesses a memory page that is mapped

into the virtual address space but not loaded in physical memory. Since actual physical

memory is much smaller than virtual memory, page faults happen.

In case of a page fault, Operating System might have to replace one of the existing pages

with the newly needed page. Different page replacement algorithms suggest different

ways to decide which page to replace.

The target for all algorithms is to reduce the number of page faults.

(i) First-In-First-Out (FIFO) Page Replacement Algorithm:
This is the simplest page replacement algorithm. In this algorithm, the operating system

keeps track of all pages in the memory in a queue, the oldest page is in the front of the

queue. When a page needs to be replaced page in the front of the queue is selected for

removal.

Example 1:

Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 page frames. Find the number of

page faults.

Initially, all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —

> 3 Page Faults. When 3 comes, it is already in memory so No Page Faults. Then 5

comes, it is not available in memory so it replaces the oldest page slot i.e 1. When 6

comes, it is also not available in memory so it replaces the oldest page slot i.e 3 and its

cause Page Fault. Finally, when 3 come it is not available so it replaces 0 ie page fault.

(ii) Optimal Page replacement:
In this algorithm, pages are replaced which would not be used for the longest duration of

time in the future.

Example:
Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 page frame.

Initially, all slots are empty, so when 7 0 1 2 are allocated to the empty slots ie 4 Page

faults. 0 is already there, so No Page fault, when 0 came. When 3 came it will take the

place of 7 because it is not used for the longest duration of time in the future and its cause

Page fault. 0 is already there, so No Page fault. 4 will takes place of 1 and its cause

Page Fault. Now for the further page reference string, No Page Fault because they are

already available in the memory.

Optimal page replacement is perfect, but not possible in practice as the operating system

cannot know future requests. The use of Optimal Page replacement is to set up a

benchmark so that other replacement algorithms can be analyzed against it.

(iii) Least Recently Used:
In this algorithm, page will be replaced which is least recently used.

Example:

Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 page frames.

Initially, all slots are empty, so when 7 0 1 2 are allocated to the empty slots, 4 Page

faults. 0 is already there, so No Page fault. When 3 came it will take the place of 7

because it is least recently used and its cause Page fault. 0 is already in memory, so No

Page fault. 4 will takes place of 1 and its cause Page Fault. Now for the further page

reference string No Page fault because they are already available in the memory.

4. Consider the following reference string:

6 1 1 2 0 3 4 6 0 2 1 2 1 2 0 3 2 1 4 0

How many page faults would occur in case of i) FIFO ii) LRU iii) Optimal

algorithm?

PART III

5. What is a deadlock? What are the necessary conditions for a deadlock to

occur?

Deadlock is a situation where a set of processes are blocked because each process

is holding a resource and waiting for another resource acquired by some other

process. Consider an example when two trains are coming toward each other on

same track and there is only one track, none of the trains can move once they are

in front of each other. Similar situation occurs

in operating systems when there are two or more processes hold some resources

and wait for resources held by other(s).For example, in the below diagram,

Process 1 is holding Resource1 and waiting for resource2which

isacquiredbyprocess2, and process2 is waiting for resource 1.

Deadlock Characterization

A deadlock happens in operating system when two or more processes need some

resource to complete their execution that is held by the other process.

A deadlock occurs if the four common conditions should true. But these

conditions are not mutually exclusive. They are given as follows:

Mutual Exclusion

There should be a resource that can only be held by one process at a time. In the

diagram below, there is a single instance of Resource 1 and it is held by Process 1

only.

Hold and Wait

A process can hold multiple resources and still request more resources from other

processes which are holding them. In the diagram given below, Process 2 holds

Resource 2 and Resource 3 and is requesting the Resource 1 which is held by

Process 1.

No Preemption

A resource cannot be preempted from a process by force. A process can only

release a resource voluntarily. In the diagram below, Process 2 cannot preempt

Resource1 from Process

1. It will only be released when Process1 relinquishes it voluntarily after its

execution is complete.

Circular Wait

A process is waiting for the resource held by the second process, which is waiting

for the resource held by the third process and so on, till the last process is waiting

for a resource held by the first process. This forms a circular chain. For example:

Process 1 is allocated Resource2 and it is requesting Resource 1. Similarly,

Process 2 is allocated Resource 1 and it is requesting Resource 2. This forms a

circular wait loop.

6. With neat diagrams explain Resource Allocation graph.
As Banker’s algorithm using some kind of table like allocation, request, available all that thing to

understand what is the state of the system. Similarly, if you want to understand the state of the

system instead of using those table, actually tables are very easy to represent and understand it,

but then still you could even represent the same information in the graph. That graph is called

Resource

Allocation Graph (RAG).

So, resource allocation graph is explained to us what is the state of the system in terms of

processes and resources. Like how many resources are available, how many are allocated and

what is the request of each process. Everything can be represented in terms of the diagram. One

of the advantages of having a diagram is, sometimes it is possible to see a deadlock directly by

using RAG, but then you might not be able to know that by looking at the table. But the tables

are better if the system contains lots of process and resource and Graph is better if the system

contains less number of process and resource.

We know that any graph contains vertices and edges. So RAG also contains vertices and edges.

In RAG vertices are two type:

Process vertex – Every process will be represented as a process vertex. Generally, the process

will be represented with a circle.

Resource vertex - Every resource will be represented as a resource vertex.

It is also two types:

Single instance type resource: It represents as a box, inside the box, there will be one dot. So

the number of dots indicate how many instances are present of each resource type.

Multi-resource instance type resource: It also represents as a box, inside the box, there will be

many dots present.

Now coming to the edges of RAG There are two types of edges in RAG:

1. Assign Edge – If you already assign a resource to a process then it is called

Assign edge.

2. Request Edge – It means in future the process might want some resource to

complete the execution that is called request edge.

So, if a process is using a resource, an arrow is drawn from the resource node to

the process node. If a process is requesting a resource, an arrow is drawn from the

process node to the resource node.

Example 1 (Single instances RAG) –

If there is a cycle in the Resource Allocation Graph and each resource in the cycle provides only

one instance, then the processes will be in deadlock. For example, if process P1 holds resource

R1, process P2 holds resource R2 and process P1 is waiting for R2 and process P2 is waiting for

R1, then process P1 and process P2 will be in deadlock.

Here’s another example, that shows Processes P1 and P2 acquiring resources R1 and R2 while

process P3 is waiting to acquire both resources. In this example, there is no deadlock because

there is no circular dependency. So cycle in single-instance resource type is the sufficient

condition for deadlock.

Example 2 (Multi-instances RAG) –

From the above example, it is not possible to say the RAG is in a safe state or in an unsafe state.

PART IV

7. Write and explain about the Banker’s algorithm with an example

Bankers’ Algorithm is resource allocation and deadlock avoidance algorithm

which test the entire request made by processes for resources, it checks for the

safe state, if after granting request system remains in the safe state it allows the

request and if there is no safe state it doesn’t allow the request made by the

process.

Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of

resources types.

Available:

 It is a 1-d array of size ‘m ’indicating the number of available resources of each

type.

 Available[j] = k means there are ‘k’ instances of resource type Rj

Max:

 It is a 2-d array of size‘n*m’ that defines the maximum demand of each

processing system.

 Max[i,j]=k means process Pi may request atmost ‘k’ instances of resource type

Rj.

Allocation:

 It is a 2-darrayofsize ‘n*m ’that defines the number of resources of each type

currently

allocated to each process.

 Allocation[i,j]=k means process Pi is currently allocated ‘k’ instances of

resource type Rj

Need:

 Itisa2-darrayofsize ‘n*m’ that indicates the remaining resource need of each

process.

 Need[i,j] =k means process Pi currently need ‘k’ instances of resource type Rj

 For its execution.

 Need[i,j] =Max[i,j]–Allocation[i,j]

Allocationi specifies the resources currently allocated to process Pi and Need

specifies the additional resources that process Pimay still request to complete its

task.

Banker’salgorithm consists of Safety algorithm and Resource request

algorithm Safety

Algorithm

The algorithm for finding out whether or not a system is in a safe state can be

described as follows:

1) Let Work and Finish be vectors of length ‘m’ and ‘n ’respectively.

Initialize: Work = Available

Finish[i]= false; for i=1,2,3,4....n

2) Find an i such that both

a) Finish[i]= false

b) Needi<=Work

If no such I exists go to step(4)

3) Work= Work +Allocation[i]

Finish[i]=true go

to step (2)

4) If Finish[i]=true for all i

Then the system is in a safe state

Resource-Request Algorithm

Let Requesti be the request array for process Pi.Requesti[j]=k means process

Piwants k

instances of resource type Rj.When a request for resources is made by process

Pi,the following

actions are taken:

1) If Requesti<=Needi

Go to

step(2);otherwise,raiseanerrorcondition,sincetheprocesshasexceededitsmaximum

claim.

2) If Requesti<=Available

Go to step(3);otherwise, Pimust wait, since the resources are not available.

3) HavethesystempretendtohaveallocatedtherequestedresourcestoprocessPiby

modifying the state as follows:

Available = Available – Request i

Allocationi=Allocationi+Requesti

Needi= Needi– Requesti

 8. Consider the following

Solution:

 Find out the need matrix

 Check if the system in a safe state with steps

 Find out the steps if process P1 makes a request (1 0 2) can the request be

granted?

Step 1: Construct the Need Matrix
The Need Matrix is calculated as:

Need[i][j]=Max[i][j]−Allocation[i][j]Need[i][j] = Max[i][j] -

Allocation[i][j]Need[i][j]=Max[i][j]−Allocation[i][j]

Process Allocation (A B C) Max (A B C) Need (A B C)

P0 0 1 0 7 5 3 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 0 9 0 2 6 0 2

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Step 2: Check if the System is in a Safe State

To check for a safe state, we follow these steps:

1. Initialize:

o Available resources: (A B C) = (3 3 2)

o Finish[] = {false, false, false, false, false} (Initially, no process has finished)

o Safe sequence = {} (Initially empty)

2. Find a process whose Need ≤ Available

 P3: Need(0 1 1) ≤ Available(3 3 2) ✅

 Allocate resources to P3, update Available:

New Available = (3+2, 3+1, 2+1) = (5 4 3)

 Finish[P3] = true

 Safe sequence = { P3 }

 P1: Need(1 2 2) ≤ Available(5 4 3) ✅

 Allocate resources to P1, update Available:

New Available = (5+2, 4+0, 3+0) = (7 4 3)

 Finish[P1] = true

 Safe sequence = { P3, P1 }

 P4: Need(4 3 1) ≤ Available(7 4 3) ✅

 Allocate resources to P4, update Available:

Answer the following

question: i) Construct a need

matrix. ii) Is the system in a

safe state? If yes what is the

safe sequence? iii) If process

P1 makes a request (1 0 2)

can the request be granted?

New Available = (7+0, 4+0, 3+2) = (7 4 5)

 Finish[P4] = true

 Safe sequence = { P3, P1, P4 }

 P0: Need(7 4 3) ≤ Available(7 4 5) ✅

 Allocate resources to P0, update Available:

New Available = (7+0, 4+1, 5+0) = (7 5 5)

 Finish[P0] = true

 Safe sequence = { P3, P1, P4, P0 }

 P2: Need(6 0 2) ≤ Available(7 5 5) ✅

 Allocate resources to P2, update Available:

New Available = (7+3, 5+0, 5+0) = (10 5 5)

 Finish[P2] = true

 Safe sequence = { P3, P1, P4, P0, P2 }

3. All processes can finish, so the system is in a SAFE STATE.

 Safe Sequence: P3→P1→P4→P0→P2P3 → P1 → P4 → P0 →

P2P3→P1→P4→P0→P2

Step 3: Check if P1’s Request (1 0 2) Can Be Granted

P1 is requesting (A B C) = (1 0 2).

We check if the request can be granted by verifying:

1. Request ≤ Available:

(1 0 2) ≤ (3 3 2) ?

 Yes, so the request can be granted.

2. New Allocation & Available Resources after Granting P1’s Request:

 New Allocation for P1 = (2+1, 0+0, 0+2) = (3 0 2)

New Available = (3-1, 3-0, 2-2) = (2 3 0)

New Need for P1 = (1-1, 2-0, 2-2) = (0 2 0)

3. Check for a Safe Sequence Again with Updated Values:

 Available resources = (2 3 0)

Following a similar process as Step 2, if a safe sequence exists, the request

is granted.

Final Answer

1. Need Matrix:

P0: (7 4 3)

P1: (1 2 2)

P2: (6 0 2)

P3: (0 1 1)

P4: (4 3 1)

2. Safe State:✅Yes

Safe Sequence:{ P3, P1, P4, P0, P2 }

3. Can P1's Request (1 0 2) Be Granted?✅Yes

PART V

9. What are the various methods used to access file?
File access mechanism refers to the manner in which the records of a file may be accessed. There

are several ways to access files −

• • Sequential access

• • Direct/Random access

• • Indexed sequential access

1. Sequential Access
• • A sequential access is that in which the records are accessed in some sequence, i.e., the

information in the file is processed in order, one record after the other. This access method is the

most primitive one.

• • The idea of Sequential access is based on the tape model which is a sequential access

device.

• • The Sequential access method is best because most of the records in a file are to be

processed. For example, transaction files.

• • Example: Compilers usually access files in this fashion.

In Brief:

• • Data is accessed one record right after another is an order.

• • Read command cause a pointer to be moved ahead by one.

• • Write command allocate space for the record and move the pointer to the new End of

File.

• • Such a method is reasonable for tape.

Advantages of sequential access

• • It is simple to program and easy to design.

• • Sequential file is best use if storage space.

Disadvantages of sequential access

• • Sequential file is time consuming process.

• • It has high data redundancy.

• • Random searching is not possible.

2. Direct Access

• • Sometimes it is not necessary to process every record in a file.

• • It is not necessary to process all the records in the order in which they are present in the

memory. In all such cases, direct access is used.

• • The disk is a direct access device which gives us the reliability to random access of any

file block.

• • In the file, there is a collection of physical blocks and the records of that blocks.

• • Example: Databases are often of this type since they allow query processing that

involves immediate access to large amounts of information. All reservation systems fall into this

category.

In brief:

• • This method is useful for disks.

• • The file is viewed as a numbered sequence of blocks or records.

• There are no restrictions on which blocks are read/written, it can be dobe in any order.

• • User now says "read n" rather than "read next".

• • "n" is a number relative to the beginning of file, not relative to an absolute physical disk

location.

Advantages:

• • Direct access file helps in online transaction processing system (OLTP) like online

railway reservation system.

• • In direct access file, sorting of the records are not required.

• • It accesses the desired records immediately.

• • It updates several files quickly.

• • It has better control over record allocation.

Disadvantages:

• • Direct access file does not provide backup facility.

• • It is expensive.

• • It has less storage space as compared to sequential file.

3. Indexed Sequential Access

• • The index sequential access method is a modification of the direct access method.

• • Basically, it is kind of combination of both the sequential access as well as direct

access.

• • The main idea of this method is to first access the file directly and then it accesses

sequentially.

• • In this access method, it is necessary for maintaining an index.

• • The index is nothing but a pointer to a block.

• • The direct access of the index is made to access a record in a file.

• • The information which is obtained from this access is used to access the file. Sometimes

the indexes are very big.

• • So to maintain all these hierarchies of indexes are built in which one direct access of an

index leads to information of another index access.

• • It is built on top of Sequential access.

• • It uses an Index to control the pointer while accessing files.

Advantages:

• • In indexed sequential access file, sequential file and random file access is possible.

• • It accesses the records very fast if the index table is properly organized.

• • The records can be inserted in the middle of the file.

• • It provides quick access for sequential and direct processing.

• • It reduces the degree of the sequential search.

Disadvantages:

• • Indexed sequential access file requires unique keys and periodic reorganization.

• • Indexed sequential access file takes longer time to search the index for the data access

or retrieval.

• It is less efficient in the use of storage space as compared to other file organizations.

10. Explain the VFS with a Schematic diagram

A Virtual File System (VFS) is an abstraction layer in an operating system that provides a

unified interface for interacting with different file systems. It enables applications to access files

stored in different formats (e.g., ext4, NTFS, FAT32) without requiring modifications.

 To provide a common interface for multiple file systems.

 To allow applications to access files uniformly, irrespective of their underlying file

system.

 To enhance portability by decoupling the application layer from storage-specific details.

 To support network file systems (NFS, SMB, etc.) seamlessly.

Architecture of VFS

The VFS architecture consists of three major layers:

1. System Call Interface Layer:
o Provides standard system calls like open(), read(), write(), close(), etc.

o Acts as an intermediary between applications and the OS.

2. VFS Layer:

o Provides a unified interface for different file systems.

o Uses inodes, directory entries, and file descriptors to manage files.

o Maps file operations to the correct file system.

3. File System Interface Layer:

o Contains implementations of various file systems (e.g., ext4, NTFS, FAT32).

o Handles file-specific operations such as reading, writing, and metadata

management.

4. Storage Layer:

o Represents the physical storage devices (HDDs, SSDs, USBs, etc.).

o The lowest layer in the VFS architecture.

Working of VFS

1. A user application requests a file operation (e.g., open("file.txt")).

2. The system call interface processes the request and forwards it to the VFS layer.

3. The VFS determines which file system (ext4, NTFS, FAT32, etc.) is responsible for the

file.

4. The request is routed to the correct file system driver.

5. The respective file system fetches the data from the physical storage.

6. The data is returned to the user application.

Key Features of VFS

 File System Independence: Supports multiple file systems seamlessly.

 Uniform API: Provides a standard interface for file operations.

 Efficiency: Caches frequently accessed files for performance improvement.

 Network File System Support: Allows remote file access (e.g., via NFS, SMB).

 Security & Permissions: Enforces access control and security policies.

Advantages of VFS

 Portability: Applications work across different file systems without modification.

 Interoperability: Allows multiple file systems to coexist in a single OS.

 Performance Optimization: Uses caching and buffering to improve efficiency.

 Flexibility: Supports adding new file systems dynamically.

Examples of File Systems Managed by VFS

File System Operating System

ext4 Linux

NTFS Windows

FAT32 Windows, Linux

HFS+ macOS

XFS Linux

The Virtual File System (VFS) is a crucial component of modern operating systems. It provides

a uniform interface for accessing different file systems, enhancing portability, performance,

and interoperability. By abstracting the underlying file system details, VFS simplifies file

management and allows seamless interaction with storage devices.

	Multilevel or Hierarchical Page Table
	Hashed Page Tables
	Inverted Page Table
	Architecture of VFS
	Working of VFS
	Key Features of VFS
	Advantages of VFS
	Examples of File Systems Managed by VFS

