
Page1of14

Page2of14

1. Describe ArrayList class and explain its constructors. Demonstrate its usage with an example program

The ArrayList class extends AbstractList and implements the List interface. ArrayList is a

generic class that has this declaration:

class ArrayList<E>
Here, E specifies the type of objects that the list will hold.

ArrayList supports dynamic arrays that can grow as needed. In Java, standard arrays are of a fixed length. After

arrays are created, they cannot grow or shrink, which means that you must know in advance how many elements

an array will hold. But, sometimes, we may not know until run time precisely how large an array we need. To
handle this situation, the Collections Framework defines ArrayList. In essence, an ArrayList is a variable-length

array of object references. That is, an ArrayList can dynamically increase or decrease in size. Array lists are

created with an initial size. When this size is exceeded, the collection is automatically enlarged. When objects
are removed, the array can be shrunk.

ArrayList has the constructors shown here:

ArrayList()

ArrayList(Collection<? extends E> c)
ArrayList(int capacity)

The first constructor builds an empty array list. The second constructor builds an array list that is initialized with

the elements of the collection c. The third constructor builds an array list that has the specified initial capacity.
The capacity is the size of the underlying array that is used to store the elements. The capacity grows

automatically as elements are added to an array list.

// Demonstrate ArrayList.
import java.util.*;

class ArrayListDemo {

public static void main(String args[]) {

// Create an array list.
ArrayList<String> al = new ArrayList<String>();

System.out.println("Initial size of al: " +

al.size());
// Add elements to the array list.

al.add("C");

al.add("A");
al.add("E");

al.add("B");

al.add("D");

al.add("F");
al.add(1, "A2");

System.out.println("Size of al after additions: " +

al.size());
// Display the array list.

System.out.println("Contents of al: " + al);

// Remove elements from the array list.

al.remove("F");
al.remove(2);

System.out.println("Size of al after deletions: " +

al.size());
System.out.println("Contents of al: " + al);

}

 }

2. Create a class STUDENT with 2 private string members: USN, NAME using Linked List class in java.

Write a program to add atleast 3 objects of above STUDENT class. Also display the data in neat format

import java.util.LinkedList;

import java.util.Iterator;

class Student {

 private String USN;

 private String name;

Page3of14

 public Student(String USN, String name) {

 this.USN = USN;

 this.name = name;

 }

 public String getUSN() {

 return USN;

 }

 public String getName() {

 return name;

 }

}

public class Main {

 public static void main(String[] args) {

 LinkedList<Student> students = new LinkedList<>();

 students.add(new Student("1", "Alice"));

 students.add(new Student("2", "Bob"));

 students.add(new Student("3", "Charlie"));

 System.out.println("Student Details:");

 System.out.println("----------------");

 Iterator<Student> iterator = students.iterator();

 while (iterator.hasNext()) {

 Student student = iterator.next();

 System.out.println("USN: " + student.getUSN() + ", Name: " + student.getName());

 }

 }

}

3. Explain the following interfaces in detail

i) Queue ii) SortedSet

The SortedSet interface extends Set and declares the behavior of a set sorted in ascending order. SortedSet is
 a generic interface that has this declaration:
 interface SortedSet<E>
 Here, E specifies the type of objects that the set will hold.

SortedSet defines several methods that make set processing more convenient. To obtain the first object in the
 set, call first(). To get the last element, use last(). You can obtain a subset of a sorted set by calling subSet(),
 specifying the first and last object in the set. If you need the subset that starts with the first element in the set,
 use headSet(). If you want the subset that ends the set, use tailSet().

Page4of14

Queue:
The Queue interface extends Collection and declares the behavior of a queue, which is often a first-in, first-out list. However,
there are types of queues in which the ordering is based upon other criteria. Queue is a generic interface that has this declaration:
interface Queue

Several methods throw a ClassCastException when an object is incompatible with the elements in the queue. A
NullPointerException is thrown if an attempt is made to store a null object and null elements are not allowed in the queue. An
IllegalArgumentException is thrown if an invalid argument is used. An IllegalStateException is thrown if an attempt is made to
add an element to a fixed-length queue that is full. A NoSuchElementException is thrown if an attempt is made to remove an
element from an empty queue

4. Explain the constructors of TreeSet class and write a java program to create Tree Set collection and access

via iterator.

TreeSet extends AbstractSet and implements the NavigableSet interface. It creates a

collection that uses a tree for storage. Objects are stored in sorted, ascending order. Access

and retrieval times are quite fast, which makes TreeSet an excellent choice when storing large

amounts of sorted information that must be found quickly.

TreeSet is a generic class that has this declaration:

class TreeSet<E>

Page5of14

Here, E specifies the type of objects that the set will hold.

TreeSet has the following constructors:

TreeSet()

TreeSet(Collection<? extends E> c)

TreeSet(Comparator<? super E> comp)

TreeSet(SortedSet<E> ss)

The first form constructs an empty tree set that will be sorted in ascending order according

to the natural order of its elements. The second form builds a tree set that contains the elements

of c. The third form constructs an empty tree set that will be sorted according to the comparator

specified by comp. (Comparators are described later in this chapter.) The fourth form builds

a tree set that contains the elements of ss

import java.util.TreeSet;

import java.util.Iterator;

public class Main {

 public static void main(String[] args) {

 TreeSet<String> treeSet = new TreeSet<>();

 // Adding elements to the TreeSet

 treeSet.add("Apple");

 treeSet.add("Banana");

 treeSet.add("Orange");

 treeSet.add("Grapes");

 // Accessing elements using iterator

 System.out.println("Elements in TreeSet:");

 System.out.println("--------------------");

 Iterator<String> iterator = treeSet.iterator();

 while (iterator.hasNext()) {

 String element = iterator.next();

 System.out.println(element);

 }

 }

}

5. Explain the following legacy classes with an example. i)Hash Table ii)Vector

Hashtable stores key/value pairs in a hash table. However, neither keys

nor values can be null. When using a Hashtable, you specify an object that is used as a key,
and the value that you want linked to that key. The key is then hashed, and the resulting

hash code is used as the index at which the value is stored within the table.

Hashtable was made generic by JDK 5. It is declared like this:
class Hashtable<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

A hash table can only store objects that override the hashCode() and equals() methods
that are defined by Object. The hashCode() method must compute and return the hash code

for the object. Of course, equals() compares two objects. Fortunately, many of Java’s built-in

classes already implement the hashCode() method. For example, the most common type of
Hashtable uses a String object as the key. String implements both hashCode() and equals().

The Hashtable constructors are shown here:

Hashtable()
Hashtable(int size)

Hashtable(int size, float fillRatio)

Hashtable(Map<? extends K, ? extends V> m)

Page6of14

Page7of14

import java.util.*;
class HTDemo2 {

public static void main(String args[]) {

Hashtable<String, Double> balance = new Hashtable<String, Double>();
String str;

double bal;

balance.put("John Doe", 3434.34);
balance.put("Tom Smith", 123.22);

balance.put("Jane Baker", 1378.00);

balance.put("Tod Hall", 99.22);
balance.put("Ralph Smith", -19.08);

// Show all balances in hashtable.

// First, get a set view of the keys.
Set<String> set = balance.keySet();

// Get an iterator.

Iterator<String> itr = set.iterator();
while(itr.hasNext()) {

str = itr.next();

System.out.println(str + ": " +
balance.get(str));

}

System.out.println();
// Deposit 1,000 into John Doe's account.

bal = balance.get("John Doe");

balance.put("John Doe", bal+1000);
System.out.println("John Doe's new balance: " +

balance.get("John Doe"));

}
}

ii)Vector

Vector implements a dynamic array. It is similar to ArrayList, but with two differences: Vector is synchronized, and it contains

many legacy methods that are not part of the Collections Framework. With the advent of collections, Vector was reengineered to

extend AbstractList and to implement the List interface. With the release of JDK 5, it was retrofitted for generics and

reengineered to implement Iterable. This means that Vector is fully compatible with collections,

and a Vector can have its contents iterated by the enhanced for loop.

Vector is declared like this:

class Vector<E>

Here, E specifies the type of element that will be stored.

Here are the Vector constructors:

Vector()

Vector(int size)

Vector(int size, int incr)

Vector(Collection<? extends E> c)

Page8of14

// Demonstrate various Vector operations.

import java.util.*;

class VectorDemo {
public static void main(String args[]) {

// initial size is 3, increment is 2

Vector<Integer> v = new Vector<Integer>(3, 2);
System.out.println("Initial size: " + v.size());

System.out.println("Initial capacity: " +

v.capacity());
v.addElement(1);

v.addElement(2);

v.addElement(3);
v.addElement(4);

System.out.println("Capacity after four additions: " +

v.capacity());
v.addElement(5);

System.out.println("Current capacity: " +

v.capacity());
v.addElement(6);

v.addElement(7);

System.out.println("Current capacity: " +
v.capacity());

v.addElement(9);

v.addElement(10);
System.out.println("Current capacity: " +

v.capacity());

v.addElement(11);
v.addElement(12);

System.out.println("First element: " + v.firstElement());

System.out.println("Last element: " + v.lastElement());

Page9of14

if(v.contains(3))
System.out.println("Vector contains 3.");

// Enumerate the elements in the vector.

Enumeration vEnum = v.elements();
System.out.println("\nElements in vector:");

while(vEnum.hasMoreElements())

System.out.print(vEnum.nextElement() + " ");
System.out.println();

}

}

6. List and Explain JDBCDriver types.

Type 1 JDBC to ODBC Driver

The JDBC type 1 driver which is also known as a JDBC-ODBC Bridge is a convert JDBC methods into ODBC

function calls. Sun provides a JDBC-ODBC Bridge driver by “sun.jdbc.odbc.JdbcOdbcDriver”.

The driver is a platform dependent because it uses ODBC which is depends on native libraries of the operating

system and also the driver needs other installation for example, ODBC must be installed on the computer and the

database must support ODBC. Type 1 is the simplest compare to all other driver but it’s a platform specific i.e. only on

Microsoft platform. The JDBC-ODBC Bridge is use only when there is no PURE-JAVA driver available for a

particular database.

Advantages:

(1) Connect to almost any database on any system, for which ODBC driver is installed.

(2) It’s an easy for installation as well as easy(simplest) to use as compare the all other driver.

Disadvantages:

(1) The ODBC Driver needs to be installed on the client machine.

(2) It’s a not a purely platform independent because its use ODBC which is depends on native libraries of the

operating system on client machine.

(3) Not suitable for applets because the ODBC driver needs to be installed on the client machine.

Type 2 Driver: Native-API Driver (Partly Java driver) :-

The JDBC type 2 driver is uses the libraries of the database which is available at client side and this driver converts

the JDBC method calls into native calls of the database so this driver is also known as a Native-API driver.

Advantage:

There is no implantation of JDBC-ODBC Bridge so it’s faster than a type 1 driver; hence the performance is better

as compare the type 1 driver (JDBC-ODBC Bridge).

Disadvantages:

(1) On the client machine require the extra installation because this driver uses the vendor client libraries.

(2) The Client side software needed so cannot use such type of driver in the web-based application.

(3) Not all databases have the client side library.

(4) This driver supports all JAVA applications except applets

Type 3 Driver: Network-Protocol Driver (Pure Java driver for database Middleware) :-

The JDBC type 3 driver uses the middle tier(application server) between the calling program and the database and

this middle tier converts JDBC method calls into the vendor specific database protocol and the same driver can be

used for multiple databases also so it’s also known as a Network- Protocol driver as well as a JAVA driver for

database middleware.

Advantages:
(1) There is no need for the vendor database library on the client machine because the middleware is database

independent and it communicates with client.

(2) Type 3 driver can be used in any web application as well as on internet also

(3) A single driver can handle any database at client side so there is no need a separate driver for each database.

(4) The middleware server can also provide the typical services such as connections, auditing, load balancing,

logging etc.

Disadvantages:

(1) An Extra layer added, may be time consuming.

(2) At the middleware develop the database specific coding, may be increase complexity.

Type 4 Driver: Native-Protocol Driver (Pure Java driver directly connected to database):

Page10of1

4

The JDBC type 4 driver converts JDBC method calls directly into the vendor specific database protocol and in

between do not need to be converted any other formatted system so this is the fastest way to communicate quires to

DBMS and it is completely written in JAVA because of that this is also known as the “direct to database Pure JAVA

driver”.

Advantage:
(1) It’s a 100% pure JAVA Driver so it’s a platform independence.

(2) No translation or middleware layers are used so consider as a faster than other drivers.

Disadvantages:

(1) There is a separate driver needed for each database at the client side.

(2) Drivers are Database dependent, as different database vendors use different network protocols.

7. Describe the various steps of JDBC process with code snippets.

Step 0: import the java.sql package
 An application that uses the jdbc API must import the java.sql package

import java.sql.*;

Step 1: Load a JDBC Driver

 Prior to JDBC 4.0 it is needed to seperately load the driver and register the driver but in jdbc 4.0 it is no longer needed to
register the driver

Class.forName(“sun.jdbc.odbc:jdbcodbcDriver”);

Step 2: Establishing a connection
 Once a driver is loaded we can establish a connection to db

 Connection con= DriverManager.getconnection(dburl,username,password)

DriverManager Connects to given JDBC URL with given user name and password
A Connection represents a session with a specific database.

The connection to the database is established by getConnection(), which requests access to the database from the DBMS.

A Connection object is returned by the getConnection() if access is granted; else getConnection() throws a

SQLException.
Sometimes a DBMS requires extra information besides userID & password to grant access to the database.

This additional information is referred as properties and must be associated with Properties or Sometimes DBMS grants access

to a database to anyone without using username or password.
Ex: Connection c = DriverManager.getConnection(url) ;

Step 3: Create a statement
 A statement object is needed to execute the query and obtain the results produced by it.
 Statement st= con.createStatement();

Step 4: Execute the statement
 The db statements can be executed by using methods like executeQuery().
 executeQuery() takes querystring as an argument and returns the results as ResultSet object
 ResultSet object contains the data returned by the query and the methods for retrieving the data
Ex: ResultSet rs=stmt.executeQuery(“select * from employee”);

Step 5: Process the result
The ResultSet consists of tuples and returns one tuple at a time when the next() is applied.
ResultSet acts as an iterator
While(rs.next())
{
System.out.println(rs.getString(1)+” “+rs.getInt(“salary”);
}
Getters can be used by referring position/name to retrieve the values
Step 6: Close the statement
 stmt.close();
Step 7: Close the connection
Commit()
con.close()

Page11of1

4

8. Discuss in detail the need of prepared Statement with an example program.

The preparedStatement object allows you to execute parameterized queries.A SQL query can be

precompiled and executed by using the PreparedStatement object. ∙ Ex: Select * from

publishers where pub_id=?

Here a query is created as usual, but a question mark is used as a placeholder for a value∙ thatis

inserted into the query after the query is compiled.

The preparedStatement() method of Connection object is called to return the preparedStatement

object.

Ex:

import java.sql.*;

public class JdbcDemo {

publicstaticvoidmain(Stringargs[]){ try{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.getConnection("jdbc:odbc:MyDataSource","khutub","");

PreparedStatement pstmt;

pstmt=con.prepareStatement("select*fromemployeewhereUserName=?"); pstmt.setString(1,"khutub");

ResultSetrs1=pstmt.executeQuery(); while(rs1.next()){

System.out.println(rs1.getString(2));

}

} // end of try

catch(Exception e){System.out.println("exception"); }

} //end of main

} // end of class

9. Discuss the following map classes with example.

a)Hash Map b)TreeMap

The HashMap class extends AbstractMap and implements the Map interface. It uses a hash table to
store the map. This allows the execution time of get() and put() to remain constant even for large sets.
HashMap is a generic class that has this declaration:
class HashMap<K, V>
Here, K specifies the type of keys, and V specifies the type of values.
The following constructors are defined:
HashMap()
HashMap(Map<? extends K, ? extends V> m)
HashMap(int capacity)
HashMap(int capacity, float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by using the
elements of m. The third form initializes the capacity of the hash map to capacity. The fourth form
initializes both the capacity and fill ratio of the hash map by using its arguments.
The meaning of capacity and fill ratio is the same as for HashSet, described earlier. The default
capacity is 16. The default fill ratio is 0.75.
HashMap implements Map and extends AbstractMap. It does not add any methods of its own.
The TreeMap Class
The TreeMap class extends AbstractMap and implements the NavigableMap interface. It creates
maps stored in a tree structure. A TreeMap provides an efficient means of storing key/value pairs in
sorted order and allows rapid retrieval. You should note that, unlike a hash map, a tree map

Page12of1

4

guarantees that its elements will be sorted in ascending key order.
TreeMap is a generic class that has this declaration:
class TreeMap<K, V>
Here, K specifies the type of keys, and V specifies the type of values.
The following TreeMap constructors are defined:
TreeMap()
TreeMap(Comparator<? super K> comp)
TreeMap(Map<? extends K, ? extends V> m)
TreeMap(SortedMap<K, ? extends V> sm)
The first form constructs an empty tree map that will be sorted by using the natural order of its
keys. The second form constructs an empty tree-based map that will be sorted by using the
Comparator comp. (Comparators are discussed later in this chapter.) The third form initializes a tree
map with the entries from m, which will be sorted by using the natural order of the keys. The fourth
form initializes a tree map with the entries from sm, which will be sorted in the same order as sm.
import java.util.*;
class TreeMapDemo {
public static void main(String args[]) {
// Create a tree map.
TreeMap<String, Double> tm = new TreeMap<String, Double>();
// Put elements to the map.
tm.put("John Doe", new Double(3434.34));
tm.put("Tom Smith", new Double(123.22));
tm.put("Jane Baker", new Double(1378.00));
tm.put("Tod Hall", new Double(99.22));
tm.put("Ralph Smith", new Double(-19.08));
// Get a set of the entries.
Set<Map.Entry<String, Double>> set = tm.entrySet();

// Display the elements.
for(Map.Entry<String, Double> me : set) {
System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());
}
System.out.println();
// Deposit 1000 into John Doe's account.
double balance = tm.get("John Doe");
tm.put("John Doe", balance + 1000);
System.out.println("John Doe's new balance: " +
tm.get("John Doe"));
}
}
10. Develop a program to insert following data into music database using prepared Statement object. Table

consists of music_id int(5),music_name varchar(20),music_author varchar(20)
package jdbcdemo;

import java.io.*;

import java.sql.*;
public class JDBCDemo {

public static void main(String[] args) {

 // TODO code application logic here
 Connection con;

 PreparedStatement pstmt;

 Statement stmt;
 ResultSet rs;

 String mid, mname,mauthor;

 Integer marks,count;

 try{

Page13of1

4

 con=DriverManager.getConnection("jdbc:mysql://127.0.0.1/mca","root","cmrit"); // type1 access
connection

 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

 do
 {

 System.out.println("\n1. Insert.\n2. Select.\n3. Update.\n4. Delete.\n5. Exit.\nEnter your

choice:");
 int choice=Integer.parseInt(br.readLine());

 switch(choice)

 {

 case 1: System.out.print("Enter music id :");
 mid=br.readLine();

 System.out.print("Enter music name :");

 mname=br.readLine();
System.out.print("Enter music author :");

 mauthor=br.readLine();

 pstmt=con.prepareStatement("insert into music values(?,?,?)");

 pstmt.setString(1,mid);
 pstmt.setString(2,mname);

pstmt.setString(2,mauthor);

 pstmt.execute();
 System.out.println("\nRecord Inserted successfully.");

 break;

 case 2:
 stmt=con.createStatement();

 rs=stmt.executeQuery("select *from music");

 if(rs.next())

 {
 System.out.println("Mid\t Mname\t Mauthor\n--------------------------------");

 do

 {
 mid=rs.getString(1);

 mname=rs.getString(2);

 mauthor=rs.getString(3);
 System.out.println(mid+"\t"+mname+"\t"+mauthor);

 }while(rs.next());

 }

 else
 System.out.println("Record(s) are not available in database.");

 break;

 case 3:
 System.out.println("Enter mid to update :");

 mid=br.readLine();

 System.out.println("Enter new mname:");

 mname=br.readLine();
 stmt=con.createStatement();

 count=stmt.executeUpdate("update student set

mname='"+mname+"'where mid='"+mid+"'");
 System.out.println("\n"+count+" Record Updated.");

 break;

 case 4: System.out.println("Enter mid to delete record:");
 mid=br.readLine();

 stmt=con.createStatement();

 count=stmt.executeUpdate("delete from music where mid='"+mid+"'");

 if(count!=0)

 System.out.println("\nRecord "+mid+" has deleted.");
 else

Page14of1

4

 System.out.println("\nInvalid USN, Try again.");
 break;

 case 5: con.close(); System.exit(0);
 default: System.out.println("Invalid choice, Try again.");

 }//close of switch

 }while(true);
 }//close of nested try

 catch(SQLException e2)

 {

 System.out.println(e2);
 }

 catch(IOException e3)

 {
 System.out.println(e3);

 }

 }//close of outer try

 }

