S N N A B

ACCREDITED WITH Ave SRABE BY NAAS

Internal Assessment Test 1 Answer scheme & Solutions — October 2024

Sub: Software Engineering Sub Code: | BCS501 Branch: AInDS
Date: | 16/10/2024 | Duration: |90 minutes | Max Marks: | 50 Sem VIl OBE
Answer any FIVE Questions MASRK CO | RBT
Draw activity diagram and Swimlane diagram for access camera surveillance via 10 |CO1| L2

the internet.

Activity
diagram for
Access

Enter possword
and user ID

camera
survelliance
via the
Internet—
sispl Valid passwords/ID,
camera views
function.

Invalid pesswords/ID

Prompt for reen!ry’

0 Input tries remain

Other functions
may also
be selected

Select surveillonce

No input
tries remoin
Thumbnail views, Select a specific comera
Select ifi (
m;:_ zm'b:u@&led comera iz9

View camera output
in lobeled window

6' this function, See ancther camera
- "
Homeowner Camera Interface
Enter password
and user ID
=]

Volid passwords/ID

ki
R L P

Prompt for reentry

Input wies
remain

No input
tries remain

Thumbnail views Select a specific comero

Select specific Select :
camera - ﬂlumbnoils)(i “‘)‘

Generate video
output
View output Prompt Foc
in lobelled window another view
Exit this
function
@ =
another
camera

Define software engineering? Briefly discuss the attributes of good software. 6 CO1| L1

2 |y [Software Engineering is an engingering branch associated with development of software product
using well-defined scientific iples, methods and procedures. The outcome of software
engineering is an efficient an

Software has characteri different th, of hardware:
1) Software is deve is noo&fact‘tgd in the Classical Sense.

Although some si i soﬁwa@c> development and hardware
manufacturing, the two a ally d@f‘cnt.

In both activities, high quality is throt@vgood design, but the manufacturing
phase for hardware can introduce prob@m that are nonexistent or easily corrected

for software. Q

Both the activities are dependent o peop@%ut the relationship between people is totally

varying. These two activities require the construction of a "product"” but the approaches are

different.

» Software costs are concentrated in engineering which means that software projects cannot
be managed as if they were manufacturing.

Y

2) Software doesn’t “Wear Out™

» In early stage of hardware development process the failure rate is very high due to
manufacturing defects, but after correcting defects failure rate gets reduced.

» Hardware components suffer from the growing effects of many other environmental

factors. Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies (extreme temperature, dusts and

wvibrations) that cause hardware to wear out [Fig:1.1]

"f

The following figure shows the relationship between failure rate and time.

Faslure curve
tor hardwere
“Infont “Wear out”™
s mortaley®

Time

Foilure

» When a hardware component wears out, it is replaced by a spare part. There are no software
spare parts.

» Every software failure indicates an error in design or in the process through which the design
was translated into machine-exccutable code. Therefore, the software maintenance tasks that
accommodate requests for change involve considerably more complexity than hardware
maintenance. However, thefimplication is clear—the software doesn’t wear out. But it does

deteriorate (frequent ck in requirement) |Fig:1.2].
Failure curves Increased failure
for software

rate due to side
effects

X

Failure rote

3) Most Software is custom-built rather than being assembled from components:

» A software part should be planned and carried out with the goal that it tends to be reused in
various projects (algorithms and data structures).

» Today software industry is trying to make library of reusable components E.g. Software
GUT is built using the reusable components such as message windows, pull down menu and
many more such components.

» In the hardware world, component reuse is a natural part of the engineering process.

Briefly explain the software engineering ethics?

The dictionary defines the word principle as “an important underlying law or
assumption required in a system of thought.” David Hooker has Proposed seven principles that
focus on software Engineering practice.

The First Principle: The Reason It All Exists
A software system exists for one reason: to provide value to its users.

The Second Principle: KISS (Keep It Simple, Stupid!)
Software design is not a haphazard process. There are many factors to consider in any
design effort. All design should be as simple as possible, but no simpler.

The Third Principle: Maintain the Vision
A clear vision is essential to the success of a software project. Without one, a project

almost unfailingly ends up being “of two [or more] minds” about itself.

The Fourth Principle: What You roduce, Others Will Consume
Always specify, design, lement knowing someone else will have to understand

what you are doing.
system wit ifetime has more value. Never
a soft\\« ect, be sure the software has a

O ¢

ves xﬁﬁ and effort. Planning ahead for
e valu% the @t‘aable components and the systems

The Seventh principle: Think! Placi ar. ﬁfete thought before action almost always
produces better results. When you think about sor ing, you are more likely to do it right.

The Fifth Principle: B
design yourself into
business purpose and t

The Sixth Principle: Plan
reuse reduces the cost and increa®
into which they are incorporated.

Co1

L1

\What are the components used for use case diagram? Draw use case diagram for hospital
management and use all the components in the diagram?
Components of a Use Case Diagram
1. Actors:
o Represent entities (human, system, or organization) interacting
with the system.
o Represented as stick figures.
2. Use Cases:
o Represent the functionalities or actions the system performs.
o Represented as ovals.
3. System Boundary:
o Defines the scope of the system.
o Represented as a rectangle enclosing use cases.
4. Relationships:
o Association: Links actors to use cases (solid lines).
o Include: Indicates a use case includes the functionality of another
(dashed arrow with "<<include>>").
o Extend: Indicates a use case's optional or conditional behavior
(dashed arrow with "<<extend>>").
o Generalization: Represents inheritance between use cases or
actors (arrow with hollow triangle).

Use Case Diagram for Hospital Management System
This system includes functionalities for:
o Actors:
o Patient
o Doctor
o Receptionist
o Administrator
e Use Cases:
Schedule Appointment
Manage Patient Records
Conduct Diagnosis
Generate Bill
o Register Patient
e Relationships:
The receptionist registers a patient.
The patient schedules an appointment with the receptionist.
The doctor conducts diagnosis and uses patient records.
The administrator generates bills for the patient.

O O O O

e}

O O O

10

COo2

L2

Development cost

What is agility in the context of software engineering work? How you define change
costs as a function of time in development

- o~
In conventional software developn@ cosloﬁ’ change increases non linearly as a project
progresses (Fig Solid Black curve). Q:b'

An agile process reduces the cost of change because software is released in increments and
change can be better controlled within an increment.

Agility argue that a well-designed agile process “flattens™ the cost of change curve shown in
following figure (shaded, solid curve), allowing a software team to accommodate changes late in
a software project without dramatic cost and time impact.

When incremental delivery is coupled with other agile practices such as continuous unit testing
and pair programming, the cost of making a change is attenuated(reduced). Although debate about
the degree to which the cost curve flattens is ongoing, there is evidence to suggest that a
significant reduction in the cost of change can be achieved. application, design, architecture etc.
The verification process involves activities like reviews, walk-throughs and inspection.

Cost of change
using conventional
software processes

Cost of change
using agile processes

Ny
g

Development schedule progress

B Idealized cost of change
using agile process

10

CO2

L2

Discuss about concurrent and specialized process models and mention advantages and
disadvantages.

Roprmarn e sy
sla g iy
amtivity o ik

Basalined

The activity modelli
other activities, actions
manner.

one of the states goted at any given time, similarly
ion, Conslruc% be represented in analogous

All Software En xist co tly bu ide in different states. E.g.
Early in a project the com tivity p]ctcdc’ﬁ 1*" iteration and exists in the
awaiting changes state. Gyt
\.’6

The modelling activity (which exis

acti\egate] while initial communication was
completed now make a transition into (

r-dev@pment state,

If however, the customer indicates thm‘z’chunges in requirement must be made, the
modelling activity moves from under-development state to awaiting changes state.

Concurrent modelling defines a series of events that will trigger transitions from state to
state for each of the software engineering activities, actions or tasks.

Concurrent modelling is applicable for all types of software development and provides an
arcnrate nictire nf the rnrrent etate nf the nrndect

s The component-based development model incorporates many of the characteristics of the
spiral model. It is evolutionary in nature, demanding an iterative approach to the creation of

software. However, the component-based development model constructs applications from
prepackaged software components.

s Modeling and construction activities begin with the identification of candidate components.
These components can be designed as either conventional software modules or object-
oriented classes or packages of classes. Regardless of the technology that is used to create
the components.

s The component-based development model incorporates the following steps
1. Available component-based products are researched and evaluated for the application
domain in question,
2. Component integration issues are considered.
3. A software architecture is designed to accommodate the components.
4. Components are integrated into the architecture,
5. Comprehensive testing is conducted to ensure proper functionality.

» The component-based development model leads to software reuse, and reusability provides
software engincers with a Iwmber of measurable benefits.

10

CO2

L2

what is requirement engineering and briefly exxplain about requirement
engineering process

Requirement Engineering (RE)

Requirement engineering is the process of systematically gathering, analyzing,
documenting, and managing the needs and requirements of stakeholders for a
software system. It ensures that the developed system fulfills its intended purpose
and aligns with stakeholders' expectations.

Requirement Engineering Process
The requirement engineering process consists of the following key steps:
1. Requirement Elicitation:
o ldentify and collect requirements from stakeholders.
o Techniques: interviews, surveys, workshops, observation, and
brainstorming.
2. Requirement Analysis:
o Evaluate collected requirements for feasibility, completeness,
consistency, and ambiguity.
o Prioritize requirements based on stakeholders' needs and project
constraints.
3. Requirement Specification:
o Document requirements in a structured format like a Software
Requirements Specification (SRS).
o Include functional, non-functional, and system constraints.
4. Requirement Validation:
o Verify and validate that the documented requirements reflect
stakeholders' needs accurately.
o Techniques: reviews, walkthroughs, and prototypes.
5. Requirement Management:
o Handle changes to requirements due to evolving stakeholder needs
Oor project scope.
o Maintain traceability between requirements and ensure
consistency.

This process ensures that the software developed aligns with user expectations,
reduces the risk of rework, and promotes efficient project execution.

10

COo2

L2

