
 Q1. a. What is NoSQL? Provide a brief explanation of aggregate data

models along with a clear diagram, using the concepts of relations and

aggregates as examples.

Ans. NoSQL is a class of database management systems designed to handle large

volumes of unstructured or semi-structured data that don't necessarily fit into the

rigid schema of traditional relational databases. NoSQL databases are optimized

for horizontal scaling, distributed architecture, and are particularly suited to large-

scale, high-traffic applications.

Key Characteristics of NoSQL Databases

• Schema flexibility: Data doesn’t need to conform to a strict schema.

• Scalability: Optimized for horizontal scaling across distributed

systems.

• Varied Data Models: NoSQL databases use a range of models to

store data, such

• as document, key-value, column-family, and graph.

• Eventual Consistency: Some NoSQL databases offer tunable

consistency levels,

• trading off strict consistency for performance and availability in

distributed

• systems.

Aggregate data models are a key concept in NoSQL databases. Unlike relational

databases that treat data as rows in tables with fixed relationships, aggregate

models bundle related data together into aggregates.

Here in the diagram have two Aggregate: Customer and Orders link between them

represent an aggregate. The diamond shows how data fit into the aggregate

structure. Customer contains a list of billing address Payment also contains the

billing address The address appears three times and it is copied each time The

domain is fit where we don’t want to change shipping and billing address.

1b. Explain impedance mismatch.

Ans. Impedance mismatch, also known as "object-relational impedance

mismatch," refers to the differences and inconsistencies between the way data is

represented in an object-oriented programming (OOP) language and how it is

stored in a relational database. In object-oriented programming, data is typically

represented as objects, encapsulating both data and behaviour, while relational

databases store data in tables with rows and columns.

Q2. a. Provide a brief explanation of the advantages of relational databases.

Ans. Relational databases offer several advantages that make them a popular

choice for managing data across various applications and industries. Here are

some key benefits:

1. Data Integrity: Relational databases enforce data integrity through

constraints such as primary keys, foreign keys, and unique constraints.

These ensure that the data remains accurate and consistent.

2. Structured Query Language (SQL): Relational databases use SQL, a

powerful and widely-adopted language for querying and managing data,

making it accessible for developers and analysts.

3. Normalization: The process of normalization reduces redundancy and

dependency by organizing data into tables. This leads to efficient storage

and easier data management.

4. Data Relationships: Relational databases excel at handling complex data

relationships. They allow users to easily join tables, enabling sophisticated

queries that extract insights across related data sets.

5. Security: Relational databases offer robust security features, such as user

authentication, role-based access control, and encryption options, ensuring

that data is protected from unauthorized access.

6. Concurrency Control: They support multiple users accessing the database

simultaneously, employing mechanisms like locking and transactions to

maintain data consistency.

7. Backup and Recovery: Most relational database systems come with built-

in solutions for data backup and recovery, ensuring data can be restored in

case of failure.

8. Scalability: While traditionally better for smaller to medium-sized

datasets, many relational database systems can scale effectively to handle

larger datasets and more complex applications.

9. ACID Compliance: Most relational databases adhere to ACID (Atomicity,

Consistency, Isolation, Durability) properties, ensuring reliable

transactions.

2b. Explain schema less databases.

Ans. Schemaless databases refer to databases that do not require a fixed schema,

meaning data structures can vary dynamically. Most NoSQL databases, like

document and key-value stores, are schemaless. This approach offers flexibility,

as data can evolve without the need to alter a rigid schema, which is beneficial

for applications with frequently changing data structures.

Characteristics:

• Flexible Data Structure: Supports data with varying formats and attributes.

• No Schema Migration: Data model changes are straightforward since

there’s no fixed schema.

• Data Evolution: Suited for applications that evolve rapidly, enabling easy

addition or removal of attributes.

Q3. Write a short note on

i. Key – value data model

The key-value data model is the simplest and most basic NoSQL data

model, where data is stored as a collection of key-value pairs. Each

unique key points to a single value, which could be a simple data type

(string, number) or complex objects like JSON, BLOBs, or serialized

objects. Key-value stores are highly performant for simple read and

write operations and are often used in caching and session management.

Characteristics:

• Data Structure: Stores data as a collection of key-value pairs.

• Keys: Unique identifiers used to retrieve the associated value.

• Values: The data associated with the key, which can be any data

type or serialized

• structure.

ii. Column family stores

Column family databases (e.g., Apache Cassandra, HBase) organize

data in rows and columns but differ from relational databases by

grouping columns into column families. Each column family can have

a unique set of columns for each row, allowing a flexible, sparse data

structure. This model is especially effective for storing time-series data

and for applications requiring fast data access across a wide range of

data points.

Characteristics:

• Data Structure: Organizes data into rows and column families. A

column family is akin to a table, but rows within the column

family can contain different columns.

• Flexible Columns: Each row can contain different columns

within the same family.

• Sparse Data: Efficiently handles sparse data, where many

columns might be empty.

• High Scalability: Designed for high scalability and distributed

data storage, making it suitable for handling large datasets.

iii. Quorums

Quorums are a consistency mechanism in distributed databases used to

ensure that a majority of nodes agree on a given operation (read or

write) before it is considered complete. This approach is common in

systems aiming for high availability and consistency despite network

failures.

Types of Quorum Configurations:

• Read Quorum: A read operation is considered successful if it

retrieves data from a majority of nodes.

• Write Quorum: A write operation is successful if it is confirmed

by a majority of nodes.

Quorum Formula:

To ensure consistency, a typical quorum formula requires that: Read

Quorum +

Write Quorum>Total Nodes.

Q4 a. Explain the following

i. Graph databases

A graph database is designed to store and manage data represented as

nodes (entities), edges (relationships), and properties (attributes of

nodes/edges). This model excels in applications where the relationships

between data points are as important as the data itself. Graph databases

are highly effective for querying complex and interconnected data.

Characteristics:

• Node-Edge-Property Model: Data is stored as nodes (similar to

entities), edges (relationships between nodes), and properties

(attributes of nodes and edges).

• Efficient Relationship Management: Quickly traverses

relationships between nodes, enabling efficient querying of

deeply connected data.

• Schema Flexibility: Schema is not strictly defined, allowing for

dynamic data relationships.

ii. Document data models

The document data model organizes data as collections of documents,

where each document is a set of key-value pairs similar to JSON or

BSON format. Unlike key-value stores, document databases can

support complex structures, allowing nested objects and arrays. This

model provides greater flexibility in data representation and is ideal for

storing semi-structured data.

Characteristics:

• Data Structure: Stores data as documents, typically JSON,

BSON, or XML.

• Schema Flexibility: No strict schema; documents within the same

collection can have varying structures.

• Embedded Documents: Documents can contain nested

documents or arrays, allowing a more hierarchical data structure.

• Indexing and Querying: Allows indexing on specific fields and

querying of individual document attributes, not just primary

keys.

4 b. How does master slave and peer to peer data distribution model

differentiated?

Ans. The master-slave model is a type of replicated database model where one

server (the master) is designated to handle all data updates, while one or more

slave servers replicate data from the master. The slaves provide read-only access

to data, which helps balance the read load. Updates are directed only to the

master, which then propagates changes to the slaves.

Characteristics:

• Centralized Write Operations: Only the master can handle write

operations.

• Read Scalability: Allows multiple read-only replicas, providing

read scalability.

• Consistency Challenges: Ensuring that all slaves are

synchronized with the master requires consistent replication

mechanisms.

In a peer-to-peer (P2P) model, each node in the network is both a server and a

client, meaning all nodes can read and write data, and there is no single master

server. Each node communicates and synchronizes directly with others,

distributing the data management and avoiding a central point of control.

Characteristics:

• Decentralized: No master node; each node is both a client and a

server.

• High Fault Tolerance: If one node fails, others can continue

operations without dependency on a central authority.

• Complex Consistency Management: Managing data consistency

and coordination across multiple writable nodes can be

challenging.

Q5 a. Write a short note on.

i. Read consistency.

Read consistency determines the consistency of data read from a

distributed database. In distributed systems, different nodes may have

slightly different versions of the data due to replication delays. Read

consistency ensures that users are aware of the potential consistency

levels when accessing data.

Types of Read Consistency:

• Strong Read Consistency: Guarantees that a read will always

return the most recent data after an update.

• Eventual Read Consistency: Allows for temporary discrepancies,

as reads may access stale data, with the system eventually

achieving consistency.

• Read-Your-Writes Consistency: Guarantees that after a user

writes data, any subsequent reads from that same user will see

their updates.

ii. CAP theorem

The CAP theorem states that in a distributed data system, it is

impossible to simultaneously provide all three of the following

guarantees:

• Consistency (C): All nodes see the same data at the same time.

• Availability (A): Every request receives a response (either

success or failure), even if parts of the system are down.

• Partition Tolerance (P): The system continues to operate despite

network partitions, where nodes cannot communicate with each

other.

According to the CAP theorem, a distributed system can provide only

two out of these three guarantees at the same time: CP Systems:

Prioritize consistency and partition tolerance but may sacrifice

availability during network issues. AP Systems: Prioritize availability

and partition tolerance but may have weaker consistency guarantees.

CA Systems: Prioritize consistency and availability but lack partition

tolerance, which limits scalability.

5b. What is peer-to-peer replication, and how is it different from master-

slave replication? Give the diagram.

Ans. The master-slave model is a type of replicated database model where one

server (the master) is designated to handle all data updates, while one or more

slave servers replicate data from the master. The slaves provide read-only access

to data, which helps balance the read load. Updates are directed only to the

master, which then propagates changes to the slaves.

Characteristics:

• Centralized Write Operations: Only the master can handle write

operations.

• Read Scalability: Allows multiple read-only replicas, providing

read scalability.

• Consistency Challenges: Ensuring that all slaves are

synchronized with the master requires consistent replication

mechanisms.

In a peer-to-peer (P2P) model, each node in the network is both a server and a

client, meaning all nodes can read and write data, and there is no single master

server. Each node communicates and synchronizes directly with others,

distributing the data management and avoiding a central point of control.

Characteristics:

• Decentralized: No master node; each node is both a client and a

server.

• High Fault Tolerance: If one node fails, others can continue

operations without dependency on a central authority.

• Complex Consistency Management: Managing data consistency

and coordination across multiple writable nodes can be

challenging.

Q6. Define version stamps. Explain briefly about various approaches of

constructing version stamp.

Ans. Version stamps (or vector clocks) are a method used in distributed databases

to track changes to data across different replicas or nodes. They help manage

conflicting updates by recording the version of each change, allowing the system

to resolve conflicts intelligently. When data is updated on a node, the version

stamp is incremented, typically using a vector clock. Each replica tracks the latest

version of the data it has seen.

1. Timestamps

Timestamps are a straightforward approach where each update is associated with

a specific time of the update. The system uses timestamps to resolve conflicts by

accepting the most recent update as the correct version. Each node attaches a

timestamp to each update. When a conflict is detected, the system compares the

timestamps and accepts the version with the latest timestamp.

Advantages: Simple to implement and requires minimal storage.

Disadvantages: Prone to conflicts if clocks aren’t synchronized. Requires strict

clock synchronization across nodes to avoid issues.

2. Counters

Counters use a numeric value to represent the order of updates, where each

successive update increments the counter. Each version of the data has a counter,

which is incremented on each update. When nodes replicate, the update with the

highest counter is considered the latest.

Advantages: Simple to implement; avoids clock synchronization issues.

Disadvantages: Limited in peer-to-peer systems without a master node. If

multiple nodes write simultaneously, conflicts can still arise.

3. Vector Clocks

Vector clocks are a more complex approach that tracks the causal history of

updates across multiple nodes by maintaining a list of counters, one for each node.

Each node maintains a separate counter for each other node, incrementing its

counter whenever it makes an update. When conflicts arise, the system compares

the vectors to determine causality. Each node maintains a vector of counters.

Every time a node makes an update, it increments its own counter. When updates

are replicated to other nodes, they compare vector clocks to determine which

updates are more recent or causally related.

Advantages: Captures causal relationships between updates, allowing for

sophisticated conflict resolution.

Disadvantages: Vector clocks grow with the number of nodes, adding overhead.

Comparisons can become computationally complex in large clusters.

4. Hybrid Timestamps (Hybrid Logical Clocks)

Hybrid timestamps combine physical time (from clocks) and logical time

(Lamport or vector clocks) to provide high accuracy without requiring perfect

clock synchronization. This combines a physical timestamp and a logical counter,

ensuring that causally related events are ordered correctly, even in the presence

of slight clock drifts. Hybrid clocks use a physical timestamp for rough ordering,

and a logical component (like a counter or vector clock) to adjust for causality. If

events occur closely in time, the logical component ensures that causally related

events are still ordered correctly.

Advantages: Provides accurate ordering without strict clock synchronization,

reducing the chances of conflicts.

Disadvantages: More complex to implement; hybrid clocks add computational

and storage overhead.

