

USN

Internal Assessment Test 2 – December 2024

Sub: Object Oriented Programming with JAVA Sub Code: BCS306A Branch:
CSE (DS)

Date: 14/12/2024 Duration: 90 minutes Max Marks: 50 Sem/Sec: III - C OBE

Answer any FIVE FULL Questions MARKS CO RBT

 1

a

Define package. Explain the steps involved in creating a user-defined package

with an example.

ANWER:

In Java, a package is a namespace that organizes a set of related classes and

interfaces. It helps to group related classes together, making the code more

modular and manageable. Packages also prevent name conflicts and allow for

better access control.

Packages in Java can be:

• Built-in (like java.util, java.io, etc.)

• User-defined (created by developers to organize their own classes)

A user-defined package is a package that you create to organize your own

classes.

Steps to Create a User-Defined Package in Java

To create a user-defined package in Java, follow these steps:

1. Create the Package Directory

You need to create a directory structure corresponding to the package name.

The directory structure will represent the package.

For example, if you want to create a package called mypackage, you will

create a directory named mypackage.

2. Define the Package

In your Java class, define the package at the top of the file using the package

keyword, followed by the package name.

3. Write Classes Inside the Package

Create Java classes inside the package directory. These classes will belong to

the package.

4. Compile the Classes

Compile the Java classes with the javac command. Make sure to use the

correct directory structure, as the javac compiler needs to know where the

package is located.

5. Use the Package in Your Program

In another Java file, you can import and use the classes from your user-defined

package using the import keyword.

Example: Creating and Using a User-Defined Package in Java

1. Create the Package Directory

First, create a directory called mypackage (the name of the package).

2. Create Classes in the Package

File 1: mypackage/Hello.java

// Hello.java

package mypackage;

public class Hello {

 public void greet() {

 System.out.println("Hello from the Hello class!");

 }

}

File 2: mypackage/Goodbye.java

// Goodbye.java

package mypackage;

5

4

L2

public class Goodbye {

 public void sayGoodbye() {

 System.out.println("Goodbye from the Goodbye class!");

 }

}

3. Create a Program to Use the Package

File 3: Main.java (This file will use the mypackage package)

// Main.java

import mypackage.Hello; // Import Hello class from mypackage

import mypackage.Goodbye; // Import Goodbye class from mypackage

public class Main {

 public static void main(String[] args) {

 Hello hello = new Hello();

 hello.greet(); // Calls the greet method from Hello class

 Goodbye goodbye = new Goodbye();

 goodbye.sayGoodbye(); // Calls the sayGoodbye method from Goodbye

class

 }

}

b Define an exception. What are the key terms used in exception handling?

Explain.

ANSWER:

An exception in Java is an event that disrupts the normal flow of the

program's execution. It is an object that wraps an error, and it can occur

at runtime when the program encounters some unusual or unexpected

situation, such as trying to divide by zero, accessing an array out of

bounds, or trying to open a file that doesn't exist. Exceptions in Java are

handled using a mechanism called exception handling, which allows a

program to catch and handle errors without crashing.

When an exception occurs, Java creates an exception object which is

then passed through the call stack until it is handled by an appropriate

catch block.

Key Terms Used in Exception Handling

Try Block

• A try block is used to wrap code that might throw an exception.

If an exception occurs within the try block, it is caught and

handled by the corresponding catch block.

Catch Block

• A catch block is used to handle exceptions that occur in the try

block. It catches exceptions of a specific type.

Finally Block

• The finally block is optional and is used to execute important

code (like closing a file or releasing resources) regardless of

whether an exception was thrown or not. The finally block is

always executed after the try and catch blocks, even if there was

no exception.

Throw

5

4

L2

• The throw keyword is used to explicitly throw an exception. You

can throw both checked and unchecked exceptions.

Throws

• The throws keyword is used in method signatures to declare that

a method may throw one or more exceptions. It tells the caller of

the method that they should handle or propagate the exception.

2

a
Explain the concept of importing packages in Java and provide an example

demonstrating the usage of the import statement.

ANWER:

In Java, packages are used to group related classes and interfaces together.

Importing a package allows you to use the classes and interfaces that are

defined in that package without needing to specify their fully qualified

names (which include the package name).

By importing a package, you can reference its classes directly, making

your code cleaner and more concise. There are two types of import

statements:

1. Single Class Import: This imports only one specific class from a

package.

2. Wildcard Import: This imports all the classes from a package.

Single Class Import:

• To import a specific class from a package, you use the import

keyword followed by the fully qualified name of the class.

• import packageName.ClassName;

• import java.util.Scanner; // Importing only the Scanner class from

java.util package

Wildcard Import:

• To import all classes from a package, you use the * symbol as a

wildcard.

import packageName.*;

import java.util.*; // Importing all classes from the java.util package

Note that wildcard imports do not work for classes in sub-packages. For

example, import java.util.*; will import all classes in java.util, but not in

java.util.stream.

When accessing classes from external libraries or different packages:

Importing packages allows you to use external libraries or classes from

other parts of the codebase.

5 4 L2

b Demonstrate the working of a nested try block with an example.

ANSWER:

A nested try block in Java is a try block placed inside another try block. The inner

try block is executed first, and if an exception occurs inside the inner block, it is

handled by its corresponding catch block. The outer try block will execute after the

inner try block has been processed, and if an exception occurs in the outer try

block, it can be handled by its own catch block.

Working of a Nested Try Block

1. The outer try block is executed first.

2. If an exception occurs in the outer try block, the outer catch block will

handle it.

3. If there is an inner try block, it will be executed next.

4. If an exception occurs in the inner try block, the inner catch block will

handle it.

5. Finally, a finally block (if present) will always be executed, regardless of

whether an exception was thrown or not.

Syntax of a Nested Try Block

try {

5 4 L3

 // Outer try block

 try {

 // Inner try block

 } catch (ExceptionType1 e1) {

 // Handle exception in inner try block

 } finally {

 // Code to be executed after inner try-catch

 }

} catch (ExceptionType2 e2) {

 // Handle exception in outer try block

} finally {

 // Code to be executed after outer try-catch

}

EXAMPLE:

public class NestedTryBlockExample {

 public static void main(String[] args) {

 try {

 // Outer try block

 System.out.println("Outer try block started.");

 try {

 // Inner try block

 System.out.println("Inner try block started.");

 // Simulate an exception in the inner block

 int result = 10 / 0; // Division by zero (ArithmeticException)

 System.out.println("Inner try block ended."); // This line won't be

executed

 } catch (ArithmeticException e1) {

 // Handle exception in inner try block

 System.out.println("Inner catch block: ArithmeticException caught in

inner try block.");

 }

 System.out.println("Outer try block ended.");

 } catch (Exception e2) {

 // Handle exception in outer try block

 System.out.println("Outer catch block: Exception caught in outer try

block.");

 } finally {

 // Finally block for outer try-catch

 System.out.println("Outer finally block executed.");

 }

 }

}

3
a

How do you create your own exception class? Explain with a program.

ANSWER:

In Java, you can create your own custom exception by defining a new class that

extends either the Exception class or the RuntimeException class.

• Exception is for checked exceptions (exceptions that must be declared in

the method signature using throws).

• RuntimeException is for unchecked exceptions (exceptions that are not

required to be declared and occur at runtime).

10 4 L2

Steps to Create Your Own Exception Class:

1. Define a Class that extends the Exception (or RuntimeException) class.

2. Provide Constructors:

o A no-argument constructor.

o A constructor that accepts a custom message.

3. Throw the Custom Exception in your code when a specific condition

occurs.

Example of a Custom Exception Class

// Custom Exception Class

class AgeNotValidException extends Exception {

 // Constructor that accepts a custom message

 public AgeNotValidException(String message) {

 super(message); // Pass the message to the parent Exception class

 }

}

public class CustomExceptionExample {

 // Method that throws the custom exception if age is less than 18

 public static void validateAge(int age) throws AgeNotValidException {

 if (age < 18) {

 throw new AgeNotValidException("Age is not valid. Age must be 18 or

older.");

 } else {

 System.out.println("Age is valid.");

 }

 }

 public static void main(String[] args) {

 try {

 // Test the custom exception with an invalid age

 validateAge(16); // This will throw the custom exception

 } catch (AgeNotValidException e) {

 // Handle the custom exception

 System.out.println("Caught Exception: " + e.getMessage());

 }

 }

}

4
a Discuss values() and valueOf() methods in Enumerations with suitable examples.

ANSWER:

In Java, enum (short for "enumeration") is a special data type that represents a

collection of constants. Enumerations in Java provide some built-in methods, and

two important ones are values() and valueOf(). These methods are used to retrieve

information about enum constants.

5 5 L2

1. values() Method

The values() method is automatically generated by the Java compiler for every

enum class. It returns an array of the enum constants in the order they are declared.

This method is useful when you need to iterate over all the values of an enum.

Syntax:

public static EnumType[] values()

Example of values() Method:

// Enum to represent days of the week

enum Day {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY

}

public class EnumValuesExample {

 public static void main(String[] args) {

 // Using values() method to get all enum constants

 Day[] days = Day.values();

 // Iterating through the array of enum constants

 for (Day day : days) {

 System.out.println(day);

 }

 }

}

2. valueOf() Method

The valueOf() method is a static method that converts a string (representing the

name of an enum constant) into the corresponding enum constant. It is useful when

you need to convert a string into an enum constant, often in scenarios like user input

or data processing where enum values are represented as strings.

Syntax:

public static EnumType valueOf(String name)

Example of valueOf() Method:

// Enum to represent days of the week

enum Day {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY, SUNDAY

}

public class EnumValueOfExample {

 public static void main(String[] args) {

 // Using valueOf() to convert string to enum constant

 String dayName = "WEDNESDAY";

 Day day = Day.valueOf(dayName); // Converts string to enum constant

 System.out.println("The enum constant is: " + day);

 // Example of invalid input

 try {

 String invalidDay = "FUNDAY"; // No such constant in enum

 Day invalid = Day.valueOf(invalidDay); // This will throw

IllegalArgumentException

 } catch (IllegalArgumentException e) {

 System.out.println("Error: " + e.getMessage());

 }

 }

}

b Explain auto-boxing/unboxing in expressions.

ANWER:

In Java, auto-boxing and auto-unboxing are features introduced in Java 5 that

simplify the interaction between primitive types (such as int, char, etc.) and their

corresponding wrapper classes (like Integer, Character, etc.).

1. Auto-Boxing: The automatic conversion of a primitive type to its

corresponding wrapper class.

2. Auto-Unboxing: The automatic conversion of a wrapper class object to its

corresponding primitive type.

1. Auto-Boxing

Auto-boxing refers to the automatic conversion of a primitive type (like int,

double, char) into its corresponding wrapper class object (like Integer, Double,

Character).

Example of Auto-Boxing:

public class AutoBoxingExample {

 public static void main(String[] args) {

 int num = 10;

 // Auto-boxing: int is automatically converted to Integer object

 Integer integerObj = num;

 System.out.println("Integer object: " + integerObj); // Output: 10

 }

}

2. Auto-Unboxing

Auto-unboxing refers to the automatic conversion of a wrapper class object (like

Integer, Double, Character) back to its corresponding primitive type (like int,

double, char).

Example of Auto-Unboxing:

public class AutoUnboxingExample {

 public static void main(String[] args) {

 Integer integerObj = new Integer(20);

 // Auto-unboxing: Integer object is automatically converted to int

 int num = integerObj;

 System.out.println("Primitive int: " + num); // Output: 20

 }

}

5 5 L2

5
a What do you mean by a thread? Explain the different ways of creating threads.

ANSWER:

A thread in Java is a lightweight process or a single path of execution in a

program. A thread allows multiple tasks to run concurrently within a single

program, which helps in improving the performance of CPU-bound or I/O-bound

tasks.

In Java, each thread is an instance of the Thread class, or it can be an

implementation of the Runnable interface. Threads allow for multitasking and

parallel processing in Java applications.

10
5 L2

Different Ways of Creating Threads in Java

There are two main ways to create a thread in Java:

1. By Extending the Thread class

2. By Implementing the Runnable interface

1. By Extending the Thread Class

In this method, you create a custom thread by extending the Thread class and

overriding its run() method. The run() method defines the task to be performed by

the thread.

Steps to Create a Thread by Extending Thread:

1. Extend the Thread class.

2. Override the run() method to define the task to be executed by the thread.

3. Create an instance of the custom thread class.

4. Start the thread by calling the start() method, which internally invokes the

run() method.

Example:

class MyThread extends Thread {

 @Override

 public void run() {

 // Code to be executed by the thread

 System.out.println("Thread is running!");

 }

 public static void main(String[] args) {

 // Create an instance of MyThread

 MyThread t = new MyThread();

 // Start the thread

 t.start();

 // Main thread continues to execute

 System.out.println("Main thread is running!");

 }

} 2. By Implementing the Runnable Interface

In this approach, you implement the Runnable interface, which requires you to

define the run() method. The advantage of using Runnable is that it allows you to

extend another class (since Java supports single inheritance, but you can implement

multiple interfaces).

Steps to Create a Thread by Implementing Runnable:

1. Implement the Runnable interface.

2. Override the run() method to define the task to be executed by the thread.

3. Create an instance of Thread class, passing the Runnable object as a

parameter to the Thread constructor.

4. Start the thread by calling the start() method.

Example:

class MyRunnable implements Runnable {

 @Override

 public void run() {

 // Code to be executed by the thread

 System.out.println("Thread is running via Runnable!");

 }

 public static void main(String[] args) {

 // Create an instance of MyRunnable

 MyRunnable runnable = new MyRunnable();

 // Create a thread and pass the Runnable object to the constructor

 Thread t = new Thread(runnable);

 // Start the thread

 t.start();

 // Main thread continues to execute

 System.out.println("Main thread is running!");

 }

}

6 a
What is the need of thread synchronization? Explain with an example how

synchronization is implemented in JAVA.

ANSWER:

In a multithreading environment, multiple threads run concurrently and

can access shared resources (such as variables, data structures, or files).

When more than one thread accesses a shared resource at the same time, it

can lead to data inconsistency or race conditions, where the final

outcome depends on the unpredictable order of execution of the threads.

Thread synchronization is a mechanism that ensures that only one

thread can access a shared resource at a time. It is crucial for maintaining

the integrity of data and ensuring that threads do not interfere with each

other when accessing shared resources.

Synchronization in Java

Java provides a synchronized keyword to ensure that only one thread can

execute a particular method or block of code at a time.

How Synchronization Works:

• When a method is marked as synchronized, it is locked by the

thread that is executing it. This prevents other threads from

executing any synchronized method on the same object.

• The thread must acquire the lock before entering a synchronized

method or block. If another thread is already executing a

synchronized method, the second thread must wait until the first

thread releases the lock.

Types of Synchronization:

1. Method Synchronization: Synchronize an entire method.

2. Block Synchronization: Synchronize only a specific block of

code.

1. Synchronization Using Methods

You can synchronize the entire method by using the synchronized

keyword in the method declaration.

Example: Synchronizing the increment() method

class Counter {

 private int count = 0;

 // Synchronized method to ensure that only one thread increments the

counter at a time

 public synchronized void increment() {

 count++;

 }

 public int getCount() {

 return count;

 }

}

public class SynchronizationExample {

 public static void main(String[] args) throws InterruptedException {

 Counter counter = new Counter();

 // Thread 1

10 5 L3

 Thread t1 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 // Thread 2

 Thread t2 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 t1.start();

 t2.start();

 t1.join();

 t2.join();

 System.out.println("Final count: " + counter.getCount());

 }

} Need for Thread Synchronization in Java

In a multithreading environment, multiple threads run concurrently and

can access shared resources (such as variables, data structures, or files).

When more than one thread accesses a shared resource at the same time, it

can lead to data inconsistency or race conditions, where the final

outcome depends on the unpredictable order of execution of the threads.

Thread synchronization is a mechanism that ensures that only one

thread can access a shared resource at a time. It is crucial for maintaining

the integrity of data and ensuring that threads do not interfere with each

other when accessing shared resources.

Problems Without Synchronization

If multiple threads are allowed to modify a shared resource concurrently

without synchronization, it can lead to unpredictable behavior. This is

known as a race condition.

Example of a Race Condition:

java

Copy code

class Counter {

 private int count = 0;

 public void increment() {

 count++;

 }

 public int getCount() {

 return count;

 }

}

public class RaceConditionExample {

 public static void main(String[] args) throws InterruptedException {

 Counter counter = new Counter();

 // Thread 1

 Thread t1 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 // Thread 2

 Thread t2 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 t1.start();

 t2.start();

 t1.join();

 t2.join();

 System.out.println("Final count: " + counter.getCount());

 }

}

Explanation:

• The Counter class has a shared resource: the count variable.

• Two threads, t1 and t2, increment the count variable 1000 times

each.

• Since the increment() method is not synchronized, there is a chance

that both threads will read the value of count at the same time,

modify it, and then write the new value back. This can lead to the

count variable being incremented incorrectly.

Possible Output (due to race condition):

arduino

Copy code

Final count: 1485 // Expected: 2000, but due to race condition, the result

is incorrect.

Solution: Thread Synchronization

To solve this problem, we use synchronization. Synchronization ensures

that only one thread can access a critical section (the code that modifies

the shared resource) at any given time.

Synchronization in Java

Java provides a synchronized keyword to ensure that only one thread can

execute a particular method or block of code at a time.

How Synchronization Works:

• When a method is marked as synchronized, it is locked by the

thread that is executing it. This prevents other threads from

executing any synchronized method on the same object.

• The thread must acquire the lock before entering a synchronized

method or block. If another thread is already executing a

synchronized method, the second thread must wait until the first

thread releases the lock.

Types of Synchronization:

1. Method Synchronization: Synchronize an entire method.

2. Block Synchronization: Synchronize only a specific block of

code.

1. Synchronization Using Methods

You can synchronize the entire method by using the synchronized

keyword in the method declaration.

Example: Synchronizing the increment() method

java

Copy code

class Counter {

 private int count = 0;

 // Synchronized method to ensure that only one thread increments the

counter at a time

 public synchronized void increment() {

 count++;

 }

 public int getCount() {

 return count;

 }

}

public class SynchronizationExample {

 public static void main(String[] args) throws InterruptedException {

 Counter counter = new Counter();

 // Thread 1

 Thread t1 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 // Thread 2

 Thread t2 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 t1.start();

 t2.start();

 t1.join();

 t2.join();

 System.out.println("Final count: " + counter.getCount());

 }

}

Explanation:

• The increment() method is marked as synchronized, so only one

thread can execute this method at a time.

• When one thread is executing the increment() method, the other

thread has to wait until the first thread finishes and releases the

lock.

Expected Output:

yaml

Copy code

Final count: 2000

Now, the race condition is avoided, and the final count is as expected.

2. Synchronization Using Code Blocks

Instead of synchronizing the entire method, you can synchronize specific

blocks of code using the synchronized keyword within a method. This

approach is more efficient if only part of the method requires

synchronization.

Example: Synchronizing a block of code inside the method

class Counter {

 private int count = 0;

 public void increment() {

 synchronized (this) {

 count++;

 }

 }

 public int getCount() {

 return count;

 }

}

public class SynchronizationBlockExample {

 public static void main(String[] args) throws InterruptedException {

 Counter counter = new Counter();

 // Thread 1

 Thread t1 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 // Thread 2

 Thread t2 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 t1.start();

 t2.start();

 t1.join();

 t2.join();

 System.out.println("Final count: " + counter.getCount());

 }

}

CI CCI HoD

