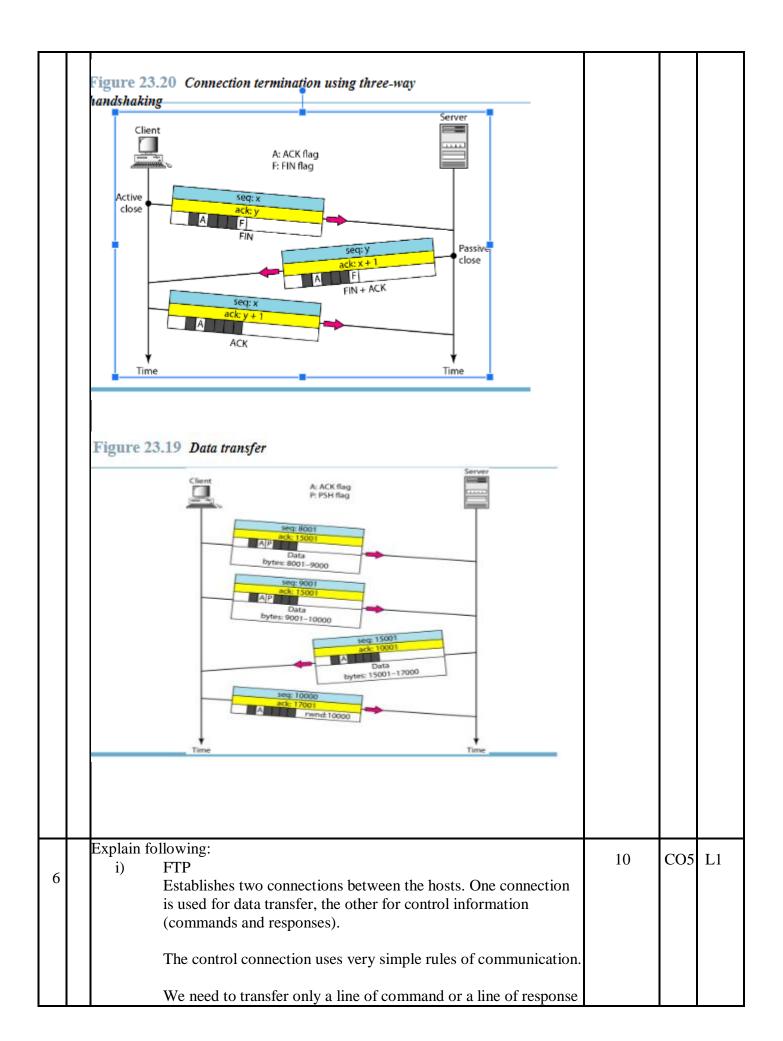
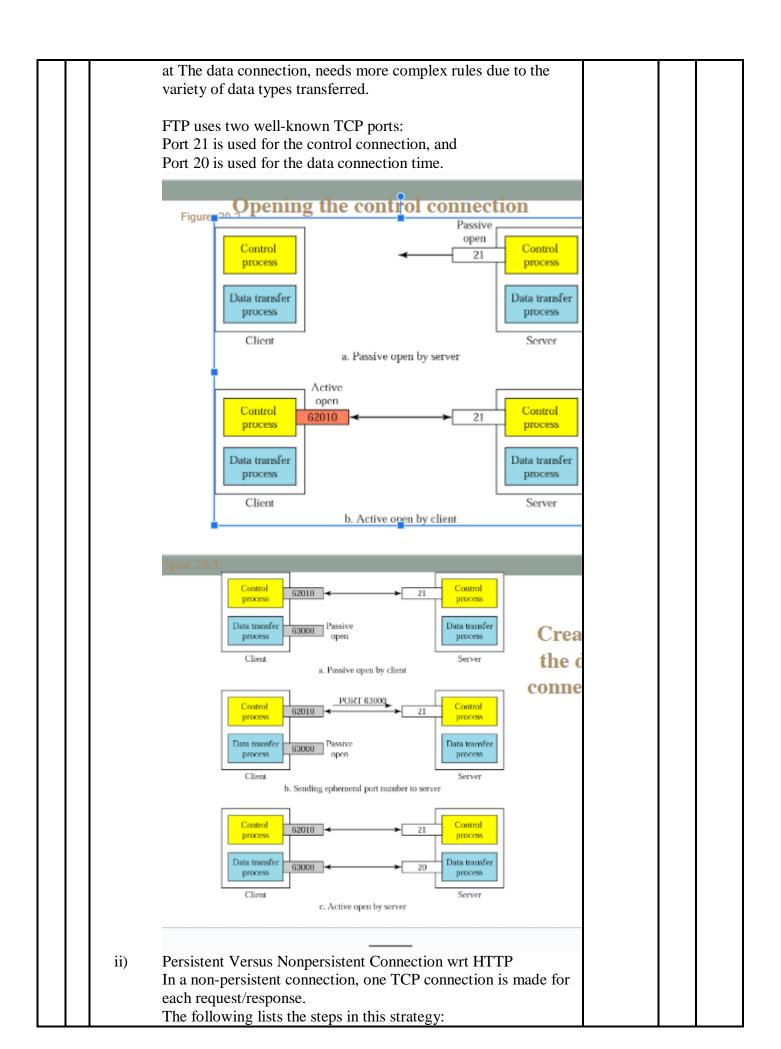


Internal Assessment Test 2 Dec 2024


Sub:	Computer	Networks	5			Sub Code:	BCS502	Branch :	AIN	DS / C	CS (DS
Date:		Duratio n:	90 minutes	Max 50 Marks:	50	Sem	V			OBE	
				any FIVE stions	•			MA	ARK S	СО	RBT
a 1	f	ragment, t	as arrived w	with an <i>M</i> bit ment, or a mi				W	5	CO3	L3
	indicate whe	ether more 1 : Indicat	fragments es that more	is part of the of the same p e fragments a e last fragmer	oacke re co	t are expec ming.	ted to follow	w:			
		mented at	all.	e lust nugnier		ine puenet	was not				
	2. If th	 This is fragme Fragme This is presence 	nted. It is the nt Offset is the last fra- ce of a non- has been fra-	5 0 : agment, mean be original, ur a greater than gment of a fr zero fragmen agmented, and	nfrag n 0: agm t offs	mented pack ented pack set indicate	cket. et. The s that the	he			
	Summary	:									
	• You	need to al If Frag fragme If Frag	so check the ment Offse nted).	us if the pack e Fragment (et = 0, it is the et > 0 , it is the	Offso e onl	et: y fragment	(not				
	(of HLEN is	s 5, and the	n which the o value of the t first byte and	tota1	length field					
	Key Data:	:									
	1. Offs	et Value:	100 (measu	red in 8-byte	unit	s).					


2.	HLEN : 5 (represents the header length, measured in 32-bit words, meaning $5\times4=20$ bytes)			
3.	meaning 5×4=20 bytes).Total Length: 100 bytes (includes the header and the payload).			
Step	-by-Step Calculation:			
1.	• Payload Length : The total length includes the header, so the payload size is:			
	Payload Length=Total Length-Header Length=100-20=80 bytes			
	First Byte Number : The fragment offset value indicates the starting position of the payload in the original unfragmented packet. Since the offset is measured in 8-byte units:			
	First Byte Number=Offset×8=100×8=800			
2.	Last Byte Number: The last byte is calculated by adding the payload length to the first byte number (but subtracting 1 since the numbering starts from 0):			
	Last Byte Number=First Byte Number+ Payload Length-1			
	=800+80-1=879			
Fina	l Answer:			
Fina • •	l Answer: First Byte Number: 800 Last Byte Number: 879			
•	First Byte Number: 800	5	CO3	L2
•	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20–65,535 bytes Legend VER: version number	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20–65,535 bytes D=60 bytes UER: version number HLEN: header length	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20–65,535 bytes D-60 bytes Header Payload Legend VER: version number HLEN: header length byte: 8 bits	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20–65,535 bytes b-60 bytes Header Payload a. IP datagram Flags D M	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20-65,535 bytes Legend VER: version number HLEN: header length byte: 8 bits Flags D M 4 8 16 31 ER HLEN Service type Total length	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20-65,535 bytes Legend VER: version number HLEN: header length byte: 8 bits a. IP datagram Flags DM 4 8 16 31 ER HLEN Service type bits 4 bits 8 bits	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20-65,535 bytes Legend VER: version number HLEN: header length byte: 8 bits a. IP datagram Flags DM 4 8 16 31 ER HLEN Service type bits 4 bits 8 bits	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format Legend 0-60 bytes Legend 0-60 bytes Legend Header Payload a. IP datagram Flags D 4 8 16 31 ER HLEN Service type Total length bits 4 bits 8 bits 16 bits Identification Flags Fragmentation offset 31 If bits ER HLEN Service type Total length 13 bits Identification Flags Fragmentation offset 13 bits Time-to-live Protocol Header checksum 16 bits	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20-65,535 bytes Legend VER: version number HLEN: header length byte: 8 bits a. IP datagram Flags DM 4 8 16 31 ER HLEN Service type Total length bits 4 bits 8 bits 16 bits Identification Flags Fragmentation offset 16 bits 7 bits 13 bits Fime-to-live Protocol Header checksum 8 bits 8 bits 16 bits Source IP address (32 bits)	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20-65,535 bytes -60 bytes -60 bytes a. IP datagram a. IP datagram Legend VER: version number HLEN: header length byte: 8 bits Flags D M 4 8 16 31 ER HLEN Service type Total length 16 bits 1 bits 1 bits 1 bits Identification Flags Fragmentation offset 16 bits 3 bits 1 3 bits Fime-to-live Protocol Header checksum 8 bits 8 bits 1 6 bits Source IP address (32 bits) Destination IP address (32 bits)	5	CO3	L2
b Drav	First Byte Number: 800 Last Byte Number: 879 w and explain IPV4 Packet format 20-65,535 bytes Legend VER: version number HLEN: header length byte: 8 bits a. IP datagram Flags DM 4 8 16 31 ER HLEN Service type Total length bits 4 bits 8 bits 16 bits Identification Flags Fragmentation offset 16 bits 7 bits 13 bits Fime-to-live Protocol Header checksum 8 bits 8 bits 16 bits Source IP address (32 bits)	5	CO3	L2

to cre	rganization is granted the block 130.56.0.0/16. The administrator wants eate 1024 subnets. nd the subnet mask.	10	CO3	L
1	. Calculate the number of bits needed for subnetting:			
	Calculate the number of bits needed for subnetting:			
	• To create 1024 subnets, $2^n \geq 1024$, where n is the number of additiona			
	• $n=10$ (since $2^{10}=1024$).			
	 Update the prefix length: Original prefix length: 16 bits. Adding 10 bits for subnetting: 16 + 10 = 26 bits. Subnet mask: The subnet mask is /26 which corresponds to: Binary: 111111111111111111111111111111111111			
1 2	 nd the number of addresses in each subnet. The total number of bits in an IPv4 address is 32. The host portion of each subnet is 32-26=6 bits. The number of addresses per subnet 2^6 = 64. 			
Subn	nd the first and last addresses in subnet 1. The first subnet, starting right after the network address. The of subnet 1:			
Subn The 1 64 64 ac 130.5	et 1 starts at 130.56.0.0. block size is ddresses, so the last address is 56.0.63 56.0.63. and last addresses:			
	address: 130.56.0.0 address: 130.56.0.63			

						1	
		d. Find the first	t and last addresses in s	subnet 1024.			
		1. Subnet 1024	is the last subnet .				
		2. Range of sub					
		 Subnet 1 					
			130.56.0.0 +	-(1024-1) imes 64 = 130.56.255.192			
		The bloc	k size is 64 addresses, so	o the last address is:			
			120 EC (
				255.192 + 63 = 130.56.255.255			
		First and last	addresses:				
		 First add 	lress: 130.56.255.192	¥			
		Last add	ress: 130.56.255.255				
	a	Difference betw	ween TCP and UDP				
3		Feature	ТСР	UDP	4	CO4	L2
		Connection Type	Connection-oriented	Connectionless			
		Reliability	Reliable	Unreliable			
		Speed	Slower due to overhead	Faster due to simplicity			
		Data Ordering	Guaranteed	Not guaranteed			
		Use Cases	Web, email, file transfers	Streaming, gaming, VoIP			
		Header Size	Larger (20-60 bytes)	Smaller (8 bytes)			
						<u> </u>	
	b	What are the th	ree domains of the dor	main name space?	6	CO5	L1
					Ũ	000	21
		Distribute	ed, Hierarchica	I Database			
	-	<mark>00</mark> 1	Root DA	NS Servers			
	L		NS servers org DN	S servers edu DNS servers			
		yahoo.com	amazon.com pbs.	.org poly.edu umass.edu			
			S DNS servers DNS	S servers DNS serversDNS servers			
		<u>client wants</u>	IP for www.amazon.c	:om; 1ª approx:			
	-	-	eries a root server to f				
		-		to get amazon.com DNS server S server to get IP address for			
		www.am	azon.com				
		I		Application 2-7			
┝─┤	a						
		What is the diff	ference between local a	and remote log-in in TELNET?	5	CO5	L1
4				C C			
		Login: Authori	zation with user identif	fication & password 1. Local			
		login 2. Remot	e login				
		1 7 11 '	XX 71				
		-	• -	erminal, keystrokes are accepted by			
				n turn, interprets it to run desired			
		utility or applic	ation program				
						1	
		2 Remote logi	n•				
		2. Remote logi	n:				
				er & then OS. But local OS does not			

		The characters are sent to TELNET client, which transfers it to TCP/IP stack.			
		TCP/IP converts it to NVT characters & sends to remote machine. OS at remote machine sends that to TELNET server, which changes NVT character to understandable format to OS.			
		Pseudo terminal driver interprets & sends to application program			
	b	In electronic mail, what are the tasks of a user agent?	5	CO5	L1
		The first component of an electronic mail system is the user agent (UA). It provides service to the user to make the process of sending and receiving a message easier. A user agent is a software package (program) that composes, reads, replies to, and forwards messages. It also handles local mailboxes on the user computers.			
5		Explain in detail with diagram connection establishment using 3way handshaking in TCP	10	CO4	L2
		Figure 23.18 Connection establishment using three-way handshaking			
		Client A: ACK flag S: SYN flag			
		Active open A S SYN Seq: 15000 ack: 8001 A S SYN + ACK Seq: 8000 ack: 15001 A			
		ACK Time Time			

 The client opens a TCP connection and sends a request. The server sends the response and closes the connection. The client reads the data until it encounters an end-of-file marker; it then closes the connection.
 HTTP version 1.1 specifies a persistent connection by default. In a persistent connection, the server leaves the connection open for more requests after sending a response. The server can close the connection at the request of a client or if a time-out has been reached. The sender usually sends the length of the data with each response.

CI

CCI

HOD