
 



 

Q.1.a. What is data communication? List and explain characteristics and components of 

communication model 

What is Data Communication? 

Data communication refers to the exchange of data or information between two or more devices 

(e.g., computers, servers, or smartphones) through a communication medium like a wired or wireless 

network. The process involves transmitting, receiving, and processing data using established 

protocols. 

Characteristics of Data Communication 

1. Delivery: The data must be delivered to the correct destination. The recipient should be the 

intended device or user. 

2. Accuracy: The communication system should ensure that the transmitted data is accurate 

without errors. 

3. Timeliness: Data must be delivered in a timely manner to ensure it remains relevant. 

4. Jitter: Jitter refers to variations in data packet arrival time. A good communication system 

minimizes jitter for smooth delivery, especially in multimedia. 

5. Bandwidth: The capacity of the communication channel determines how much data can be 

transmitted in a given time frame. 

 

Components of the Communication Model 

The communication model typically consists of the following components: 

1. Sender 

o Role: The device or entity that initiates the communication process by sending data. 

o Example: A computer or a smartphone sending an email. 

2. Receiver 



o Role: The device or entity that receives the transmitted data. 

o Example: The recipient's computer or smartphone. 

3. Message 

o Role: The actual information being transmitted. 

o Example: A text message, audio file, video stream, or email content. 

4. Transmission Medium 

o Role: The physical path or channel through which data travels from sender to 

receiver. 

o Examples: 

▪ Wired: Ethernet cables, fiber optics. 

▪ Wireless: Wi-Fi, radio waves. 

5. Protocol 

o Role: A set of rules or standards that define how data is formatted, transmitted, and 

received. 

o Example: HTTP, FTP, TCP/IP. 

6. Encoder/Decoder 

o Role: Converts data into a transmittable format at the sender's end (encoding) and 

converts it back into a readable format at the receiver's end (decoding). 

o Example: Compression algorithms like MP3 for audio or H.264 for video. 

7. Feedback 

o Role: Acknowledgment sent by the receiver to confirm successful data delivery. 

o Example: "Message received" notification or an HTTP acknowledgment packet. 

8. Noise 

o Role: Any interference or distortion during the transmission process that can affect 

data integrity. 

o Example: Signal interference in wireless communication. 

 

Q.1.b.Define switching. Explain Circuit Switched Network and Packet Switched Network. 

Definition of Switching 

Switching is a technique used in telecommunication and networking to route data or voice signals 

between devices in a network. It ensures efficient utilization of resources by directing data packets or 

establishing dedicated communication paths between the sender and receiver. 

 



Types of Switching 

1. Circuit-Switched Network 

2. Packet-Switched Network 

 

1. Circuit-Switched Network 

In a circuit-switched network, a dedicated communication path or circuit is established between the 

sender and receiver for the duration of the communication session. This type of switching is 

commonly used in traditional telephone networks. 

Features: 

• Dedicated Path: A single, exclusive channel is established for communication. 

• Real-Time Communication: Suitable for applications like voice calls. 

• Resource Usage: Resources are reserved and cannot be shared with others until the session 

ends. 

• Latency: Minimal latency once the circuit is established. 

Advantages: 

• Reliable and consistent data transfer. 

• Predictable performance due to a fixed data transfer path. 

Disadvantages: 

• Inefficient use of resources as the dedicated channel remains idle when not in use. 

• Establishing a circuit takes time. 

Example: 

Traditional Public Switched Telephone Network (PSTN). 

 

2. Packet-Switched Network 

In a packet-switched network, data is divided into packets, and each packet is transmitted 

independently over shared network resources. Packets may take different routes to reach the 

destination, where they are reassembled in the correct order. 

Features: 

• No Dedicated Path: Packets are routed dynamically based on availability. 

• Efficient Resource Use: Resources are shared among multiple users. 

• Store-and-Forward Mechanism: Routers store packets temporarily before forwarding them. 

• Data Integrity: Packets are checked for errors and retransmitted if needed. 

Advantages: 



• Efficient resource utilization. 

• Scalable and adaptable to varying traffic conditions. 

• Lower cost compared to circuit-switched networks. 

Disadvantages: 

• Latency due to packet reassembly and routing delays. 

• Potential for packet loss or out-of-order delivery. 

Example: 

The Internet, which uses protocols like TCP/IP. 

 

Comparison: Circuit-Switched vs Packet-Switched Networks 

Aspect Circuit-Switched Network Packet-Switched Network 

Path Dedicated Dynamic 

Resource Utilization Inefficient Efficient 

Latency Low (after setup) Variable 

Usage Voice calls Data communication (e.g., emails) 

Example PSTN Internet 

Q.1.c With neat sketch, explain different layers of TCP/IP protocol suite  

Layers of TCP/IP Protocol Suite 

The TCP/IP protocol suite is a set of communication protocols used to connect network devices on 

the internet. It is organized into four abstraction layers, each responsible for specific functionalities. 

 

1. Application Layer 

• Function: Provides network services to applications. It handles high-level protocols and user 

interfaces. 

• Protocols: 

o HTTP, HTTPS (web browsing) 

o SMTP (email sending) 

o FTP (file transfer) 

o DNS (domain name resolution) 

• Examples: Web browsers, email clients, and file transfer applications. 

 



2. Transport Layer 

• Function: Ensures reliable data delivery and provides end-to-end communication between 

devices. 

• Key Features: 

o Segmentation: Divides large data into smaller segments. 

o Flow Control: Manages the data transmission rate to avoid congestion. 

o Error Control: Ensures data integrity by retransmitting lost or corrupted packets. 

• Protocols: 

o TCP (reliable, connection-oriented) 

o UDP (faster, connectionless) 

 

3. Internet Layer 

• Function: Handles logical addressing and routing of data packets between devices. 

• Key Features: 

o Logical IP addressing for unique identification of devices. 

o Routing of packets across networks. 

• Protocols: 

o IP (IPv4, IPv6): Provides addressing and routing. 

o ICMP: Used for error reporting (e.g., ping command). 

o ARP: Resolves IP addresses to MAC addresses. 

 

4. Network Access Layer 

• Function: Deals with the hardware and physical transmission of data. 

• Key Features: 

o Converts packets into frames for physical transmission. 

o Responsible for Media Access Control (MAC) addressing. 

• Protocols: 

o Ethernet, Wi-Fi, DSL. 

o Manages data transmission over various physical media. 

 

Diagram of TCP/IP Protocol Suite 



plaintext 

CopyEdit 

+----------------------+ 

|  Application Layer   | <- HTTP, FTP, SMTP, DNS 

+----------------------+ 

|    Transport Layer   | <- TCP, UDP 

+----------------------+ 

|    Internet Layer    | <- IP, ICMP, ARP 

+----------------------+ 

| Network Access Layer | <- Ethernet, Wi-Fi 

+----------------------+ 

|    Physical Medium   | <- Copper, Fiber Optic, Wireless 

+----------------------+ 

 

Key Points 

• The TCP/IP model maps to the OSI model but has fewer layers: 

o Application Layer combines the Application, Presentation, and Session layers of OSI. 

o Network Access Layer corresponds to the Data Link and Physical layers of OSI. 

• It is widely used because it is simpler and directly maps to internet communication. 

Q.2.a.What are guided transmission media? Explain twisted pair cable in detail. 

Guided Transmission Media 

Guided transmission media refers to physical pathways that guide the transmission of data signals 

from one device to another. These media are tangible and require a physical connection. They are 

commonly used in wired communication systems. 

Types of Guided Transmission Media 

1. Twisted Pair Cable 

2. Coaxial Cable 

3. Optical Fiber Cable 

 

Twisted Pair Cable 



A twisted pair cable consists of pairs of insulated copper wires twisted together to reduce 

electromagnetic interference (EMI) and crosstalk. It is the most commonly used medium for 

telephone and LAN (Local Area Network) connections. 

Structure of Twisted Pair Cable 

• Two insulated copper wires are twisted together in a helical shape. 

• The twisting reduces interference from external sources and between pairs. 

Types of Twisted Pair Cables 

1. Unshielded Twisted Pair (UTP): 

o No additional shielding beyond the insulating cover. 

o Lighter, cheaper, and easier to install. 

o Used in Ethernet networks and telephone lines. 

2. Shielded Twisted Pair (STP): 

o Includes an additional metallic shielding to reduce interference. 

o More expensive and provides better performance than UTP. 

o Used in environments with high electromagnetic interference. 

 

Advantages of Twisted Pair Cable 

1. Cost-Effective: Inexpensive compared to coaxial and optical fiber cables. 

2. Flexible and Lightweight: Easy to install and maintain. 

3. Reduces Crosstalk: Twisting minimizes signal interference between adjacent wires. 

4. Widely Available: Commonly used for many networking applications. 

Disadvantages of Twisted Pair Cable 

1. Limited Bandwidth: Cannot support very high data transfer rates. 

2. Limited Distance: Signal degradation occurs over long distances without repeaters. 

3. Susceptible to Interference: Especially for UTP in environments with high EMI. 

 

Applications of Twisted Pair Cable 

1. Telephone Lines: Used for voice communication. 

2. Local Area Networks (LANs): Widely used in Ethernet connections (e.g., Cat 5, Cat 6 cables). 

3. DSL Lines: Used for broadband internet access. 

 

Comparison: UTP vs STP 



Aspect UTP (Unshielded Twisted Pair) STP (Shielded Twisted Pair) 

Cost Lower Higher 

Interference More susceptible Better protection from EMI 

Performance Adequate for basic applications Suitable for high-interference areas 

Installation Easier Slightly more difficult 

Q.2.b.What is Virtual Circuit Network (VCN)? With neat diagram, explain three phases involved in 

VCN. 

What is a Virtual Circuit Network (VCN)? 

A Virtual Circuit Network (VCN) is a type of network communication model in which a logical path or 

circuit is established between the sender and receiver before data transmission begins. It combines 

features of circuit switching and packet switching, ensuring reliable and ordered delivery of packets 

over a predefined route. 

Key Features of VCN: 

1. Logical Connection: A virtual connection is established before data transfer. 

2. Packet Sequencing: Data packets are delivered in order along the pre-defined path. 

3. Error Handling: Reliable delivery with mechanisms to detect and correct errors. 

 

Phases of Virtual Circuit Network 

VCNs operate in three distinct phases: 

1. Connection Establishment Phase 

• A logical connection (virtual circuit) is created between the sender and receiver. 

• The network nodes (routers/switches) determine the path to be used for the data 

transmission. 

• Routing tables are updated to define the route. 

• This phase is similar to setting up a circuit in circuit switching. 

2. Data Transfer Phase 

• Data is transmitted in the form of packets along the established virtual circuit. 

• Each packet contains a virtual circuit identifier (VCI) instead of the full destination address. 

• The network ensures: 

o Orderly delivery: Packets arrive in sequence. 

o Error checking and correction: If errors occur, the affected packets are 

retransmitted. 



3. Connection Termination Phase 

• Once the communication is complete, the virtual circuit is terminated. 

• The resources allocated during the connection establishment are released. 

• This ensures efficient utilization of network resources. 

 

Diagram: Virtual Circuit Network and Phases 

plaintext 

CopyEdit 

+-----------------+           +---------------+           +----------------+ 

|     Sender      |  <---->  | Intermediate  |  <---->  |    Receiver     | 

|                 |           | Nodes (Switches)         |                 | 

+-----------------+           +---------------+           +----------------+ 

 

    Phase 1: Connection Establishment (Route setup and resource allocation) 

    Phase 2: Data Transfer (Data packets travel along the virtual circuit) 

    Phase 3: Connection Termination (Release of resources) 

 

Advantages of Virtual Circuit Network 

1. Reliable Communication: Guarantees ordered delivery of packets. 

2. Efficient Error Handling: Reduces retransmission overhead due to packet loss. 

3. Fixed Path: Simplifies routing during the data transfer phase. 

Disadvantages of Virtual Circuit Network 

1. Setup Delay: The connection establishment phase adds latency before transmission begins. 

2. Resource Dependency: Resources are reserved for the duration of the connection. 

3. Scalability Issues: May not be as efficient in highly dynamic or large-scale networks. 

 

Applications 

• Virtual Circuit Networks are commonly used in: 

o Asynchronous Transfer Mode (ATM). 

o Frame Relay. 

o MPLS (Multiprotocol Label Switching) for modern data communication. 



Q.2.c.Write a note on Encapsulation and decapsulation at Source Host for TCP/IP 06 12 protocol 

suite. 

Encapsulation and Decapsulation in TCP/IP Protocol Suite 

Encapsulation and decapsulation are essential processes in the TCP/IP protocol suite, enabling data 

communication between devices across a network. These processes ensure that data is prepared for 

transmission at the source and correctly interpreted at the destination. 

 

Encapsulation (Source Host) 

Encapsulation is the process of adding headers (and sometimes trailers) to data as it passes through 

the layers of the TCP/IP protocol suite. Each layer encapsulates the data received from the layer 

above it with its own protocol-specific header. 

Steps of Encapsulation: 

1. Application Layer: 

o The application generates the data (e.g., a web page or an email) and passes it to the 

transport layer. 

o No headers are added at this layer in TCP/IP (unlike OSI). 

2. Transport Layer: 

o Adds a transport header, which includes: 

▪ Port numbers to identify applications (e.g., HTTP uses port 80). 

▪ Sequence numbers for data reassembly. 

▪ Error detection codes for reliability. 

o The encapsulated unit is called a segment (TCP) or datagram (UDP). 

3. Internet Layer: 

o Adds an IP header, which includes: 

▪ Source and destination IP addresses. 

▪ Packet identification and routing information. 

o The encapsulated unit is called a packet. 

4. Network Access Layer: 

o Adds a frame header and trailer, which include: 

▪ MAC (Media Access Control) addresses. 

▪ Error-checking codes for the physical transmission. 

o The encapsulated unit is called a frame. 

5. Physical Layer: 



o Converts the frame into electrical, optical, or radio signals for transmission over the 

physical medium. 

 

Decapsulation (Destination Host) 

Decapsulation is the reverse process of encapsulation, performed at the destination host. Each layer 

removes its corresponding header, processes the information, and passes the remaining data to the 

layer above. 

Steps of Decapsulation: 

1. Physical Layer: 

o Receives raw signals and converts them into frames. 

o Passes the frame to the network access layer. 

2. Network Access Layer: 

o Removes the frame header and trailer. 

o Checks for errors using the trailer information. 

o Passes the packet to the internet layer. 

3. Internet Layer: 

o Removes the IP header. 

o Processes the destination IP address to ensure the packet is intended for this host. 

o Passes the segment to the transport layer. 

4. Transport Layer: 

o Removes the transport header. 

o Uses port numbers to determine the correct application for the data. 

o Passes the data to the application layer. 

5. Application Layer: 

o Processes the data and presents it to the user or the corresponding application. 

 

Encapsulation and Decapsulation in Diagram 

plaintext 

CopyEdit 

Source Host (Encapsulation)                     Destination Host (Decapsulation) 

+-----------------------+                       +-----------------------+ 

| Application Data      | ---> Application ---> | Application Data      | 



+-----------------------+                       +-----------------------+ 

| Transport Header      | ---> Transport  ---> | Transport Header      | 

+-----------------------+                       +-----------------------+ 

| Internet Header       | ---> Internet   ---> | Internet Header       | 

+-----------------------+                       +-----------------------+ 

| Frame Header & Trailer| ---> Network    ---> | Frame Header & Trailer| 

+-----------------------+                       +-----------------------+ 

| Physical Medium       | ---> Physical   ---> | Physical Medium       | 

+-----------------------+                       +-----------------------+ 

 

Q.3.a.Define Redundancy. Explain CRC encoder and CRC decoder operation with block diagram. 

Definition of Redundancy 

Redundancy refers to the inclusion of extra bits or information in transmitted data to detect and/or 

correct errors during communication. These extra bits do not convey additional information but are 

used to enhance the reliability of data transmission. 

Redundancy techniques ensure that errors introduced during transmission can be detected or 

corrected at the receiver's end. 

 

Cyclic Redundancy Check (CRC) 

Cyclic Redundancy Check (CRC) is an error-detecting technique widely used in digital communication 

and storage systems. CRC uses polynomial division to generate a checksum, which is transmitted 

along with the data. The receiver performs the same division operation to verify data integrity. 

 

Operation of CRC Encoder and Decoder 

1. CRC Encoder 

The encoder generates a checksum (remainder) using polynomial division and appends it to the data 

before transmission. 

Steps in CRC Encoding: 

1. Data Representation: Represent the message as a binary string. 

2. Generator Polynomial: Use a predefined generator polynomial (e.g., G(x)G(x)G(x)). 

3. Padding: Append n−1n-1n−1 zero bits to the message, where nnn is the degree of the 

generator polynomial. 

4. Division: Perform binary division of the padded message by G(x)G(x)G(x) using modulo-2 

arithmetic. 



5. Remainder: The remainder from the division is the CRC checksum. 

6. Appending Checksum: Append the checksum to the original message and transmit the 

result. 

2. CRC Decoder 

The decoder verifies the integrity of the received message by dividing it by the same generator 

polynomial. 

Steps in CRC Decoding: 

1. Receive Data: Retrieve the transmitted message, which includes the original data and the 

CRC checksum. 

2. Division: Perform binary division of the received message by G(x)G(x)G(x) using modulo-2 

arithmetic. 

3. Verification: 

o If the remainder is zero, the data is error-free. 

o If the remainder is non-zero, an error has occurred. 

 

Block Diagrams 

CRC Encoder Block Diagram 

plaintext 

CopyEdit 

+----------------+           +---------------+ 

| Input Message  |  ------>  |   Shift       | 

| (Data Bits)    |           | Register      | 

+----------------+           +---------------+ 

                               | 

                               v 

                       +---------------+ 

                       | Modulo-2 XOR  | 

                       +---------------+ 

                               | 

                               v 

+----------------+           +---------------+ 

| Generator      |  ------>  | CRC Checksum  | 



| Polynomial     |           | Generator     | 

+----------------+           +---------------+ 

CRC Decoder Block Diagram 

plaintext 

CopyEdit 

+----------------+           +---------------+ 

| Received Data  |  ------>  |   Shift       | 

| (Data + CRC)   |           | Register      | 

+----------------+           +---------------+ 

                               | 

                               v 

                       +---------------+ 

                       | Modulo-2 XOR  | 

                       +---------------+ 

                               | 

                               v 

+----------------+           +---------------+ 

| Generator      |  ------>  | CRC Remainder | 

| Polynomial     |           | Verifier      | 

+----------------+           +---------------+ 

 

Advantages of CRC 

1. High Error Detection: Detects single-bit and burst errors effectively. 

2. Simple Implementation: Easy to implement using shift registers and modulo-2 arithmetic. 

3. Efficiency: Adds minimal redundancy while ensuring high reliability. 

Disadvantages of CRC 

1. No Error Correction: CRC detects errors but cannot correct them. 

2. Limited Scope: Cannot detect all types of errors, especially in high-noise environments. 

Applications 

• Networking protocols (e.g., Ethernet, Wi-Fi). 

• Storage devices (e.g., hard drives, SSDs). 



• Communication systems (e.g., digital TV, mobile networks). 

Q.3.b.Distinguish between Flow Control and Error Control Explain Stop and Wait Protocol  

Distinction Between Flow Control and Error Control 

Aspect Flow Control Error Control 

Definition 

Regulates the rate of data transmission to 

prevent the sender from overwhelming the 

receiver. 

Ensures the integrity and correctness of 

the transmitted data by detecting and 

correcting errors. 

Purpose Prevents buffer overflow at the receiver. 
Detects and corrects errors caused by 

noise or interference during transmission. 

Mechanism 
Uses techniques like sliding window, stop-

and-wait. 

Uses techniques like CRC, parity bits, 

checksums, and ARQ. 

Key Focus Data flow management. Data reliability. 

Protocols Stop-and-Wait, Sliding Window Protocols. 
ARQ (Automatic Repeat Request), 

Hamming Code. 

 

Stop-and-Wait Protocol 

The Stop-and-Wait Protocol is a simple data flow and error control method where the sender 

transmits one data frame at a time and waits for an acknowledgment (ACK) before sending the next 

frame. 

How Stop-and-Wait Protocol Works 

1. Sender Side: 

o Transmits a single data frame to the receiver. 

o Waits for an acknowledgment before sending the next frame. 

2. Receiver Side: 

o Receives the frame, processes it, and sends an acknowledgment back to the sender. 

o If the frame is damaged or missing, the receiver does not send an acknowledgment, 

prompting the sender to retransmit. 

 

Flow Control in Stop-and-Wait 

• Ensures that the sender waits until the receiver is ready to accept the next frame. 

• Prevents the receiver's buffer from being overwhelmed. 

 

Error Control in Stop-and-Wait 



• Uses ACKs and timeouts for error detection and correction: 

o If the sender does not receive an acknowledgment within a specific time (timeout), it 

retransmits the frame. 

o If an acknowledgment is received, the sender proceeds to the next frame. 

 

Advantages of Stop-and-Wait Protocol 

1. Simple and easy to implement. 

2. Ensures reliable communication with error recovery. 

 

Disadvantages of Stop-and-Wait Protocol 

1. Low Efficiency: The sender remains idle while waiting for acknowledgment, leading to poor 

utilization of the network. 

2. High Delay: Increased latency due to waiting after each frame. 

 

Illustration of Stop-and-Wait Protocol 

plaintext 

CopyEdit 

Sender:     [Frame 1] ---->    Waits for ACK    ----> [Frame 2] 

              |                                       | 

              v                                       v 

Receiver:  Acknowledges ----> Sends ACK ----> Acknowledges 

If an error occurs: 

• Receiver does not send ACK. 

• Sender retransmits the same frame. 

 

Q.3.c. List and explain Coutrol Fields of 1-frames, S-frames and U-frames. 

Control Fields in Frames (1-frames, S-frames, and U-frames) 

In the HDLC (High-Level Data Link Control) protocol, control fields are used to manage and control 

the communication between devices. The HDLC protocol defines three types of frames: 

1. I-Frames (Information Frames): Used for data transmission. 

2. S-Frames (Supervisory Frames): Used for flow control and error control. 

3. U-Frames (Unnumbered Frames): Used for network management and control. 



Each frame type has a specific control field structure that serves different purposes. 

 

1. I-Frames (Information Frames) 

I-frames carry user data and control information for flow and error control. 

Control Field Structure for I-Frames: 

Bits Description 

N(S) Sequence number of the transmitted frame. 

N(R) Acknowledgment number for the received frame. 

P/F (Poll/Final) Indicates whether the frame is a poll or final frame. 

• Purpose: 

o Transmit user data between devices. 

o Include acknowledgment for previously received data frames. 

 

2. S-Frames (Supervisory Frames) 

S-frames are used for flow control and error control. They do not carry user data but manage the 

communication session. 

Control Field Structure for S-Frames: 

Bits Description 

Control Type (2 bits) 

Indicates the type of S-frame:  

- 00: Receive Ready (RR)  

- 01: Receive Not Ready (RNR)  

- 10: Reject (REJ)  

- 11: Selective Reject (SREJ). 

N(R) Acknowledgment number for the last correctly received I-frame. 

P/F Poll/Final bit for session management. 

• Purpose: 

o Manage flow control: 

▪ RR: Indicates the receiver is ready to accept more frames. 

▪ RNR: Indicates the receiver is not ready to accept frames. 

o Manage error control: 

▪ REJ: Signals a negative acknowledgment for a lost or erroneous frame. 

▪ SREJ: Used for selective retransmission of a specific frame. 



 

3. U-Frames (Unnumbered Frames) 

U-frames are used for network management and control functions, such as connection 

establishment, disconnection, and error reporting. 

Control Field Structure for U-Frames: 

Bits Description 

Control Type (5 bits) Specifies the type of U-frame operation (e.g., SABME, DISC, UA). 

P/F Poll/Final bit for session management. 

Command/Response Differentiates between command and response frames. 

• Purpose: 

o Establish, manage, and terminate communication sessions. 

o Handle special control signals like Set Asynchronous Balanced Mode Extended 

(SABME), Disconnect (DISC), and Unnumbered Acknowledgment (UA). 

 

Summary Table of Control Fields 

Frame 

Type 
Purpose Control Field Components 

I-Frame Data transmission N(S), N(R), P/F 

S-Frame Flow and error control Control Type (RR, RNR, REJ, SREJ), N(R), P/F 

U-Frame 
Network management and 

control 

Control Type (SABME, DISC, UA, etc.), P/F, 

Command/Response 

Q.4.a.What is Hamming distance? With example, explain Party Check Code. 

Hamming Distance 

The Hamming distance between two strings of equal length is defined as the number of positions at 

which the corresponding symbols (bits) are different. In other words, it measures how many bits 

need to be changed to convert one binary string into another. 

Formula: 

Hamming Distance=Number of bit positions where the two strings differ\text{Hamming Distance} = 

\text{Number of bit positions where the two strings 

differ}Hamming Distance=Number of bit positions where the two strings differ 

For example: 

• Hamming distance between 10101 and 10011 is 2 because the bits at the second and fourth 

positions are different. 



 

Parity Check Code 

The parity check code is a simple error detection scheme in which an additional bit, called the parity 

bit, is added to the data to make the number of 1-bits either even or odd. The parity bit is used to 

check the integrity of data during transmission. There are two types of parity checks: 

1. Even Parity: The number of 1-bits in the data, including the parity bit, should be even. 

2. Odd Parity: The number of 1-bits in the data, including the parity bit, should be odd. 

Working of Parity Check: 

• Sender Side: The sender calculates the parity bit based on the data and appends it to the 

data. 

• Receiver Side: The receiver checks the received data (including the parity bit) to verify 

whether the number of 1-bits is even or odd, depending on the parity scheme used. If the 

condition is violated, an error is detected. 

Example of Parity Check Code: 

Let's assume we are using even parity. 

1. Original Data: 1011 (4 bits of data) 

o Number of 1s in 1011 is 3, which is odd. 

o To make the number of 1s even, we append a parity bit of 1 (because 3 + 1 = 4, 

which is even). 

o Transmitted Data: 10111 (data + parity bit) 

2. At Receiver Side: The receiver checks the parity. 

o Number of 1s in 10111 is 4, which is even. 

o The data is correct as per the even parity rule. 

If the transmitted data were 10110 (with an incorrect parity bit): 

• Number of 1s in 10110 is 3, which is odd. Therefore, the receiver detects an error because it 

doesn't match the expected even parity. 

 

Hamming Distance and Parity Check 

The Hamming distance can be used to evaluate the effectiveness of error-detection schemes like 

parity checking. Parity checks can detect single-bit errors because they ensure that the total number 

of 1-bits (including the parity bit) matches the parity rule (even or odd). However, they cannot detect 

multiple-bit errors where the number of flipped bits does not change the overall parity. 

Example: 

• Original Data: 1011 (Even parity → Parity bit 1 → 10111) 



• Transmitted Data: 11110 (Hamming distance from the original = 2) 

In this case, two bits are flipped, but since we are using only a single parity bit, the error will not be 

detected by the parity check (as the overall number of 1s remains even). This highlights the 

limitation of using only a single-bit parity check in detecting multiple-bit errors. 

 

Q.4.b. Define Framing. Explain character oriented framing and bit-oriented framing  

Framing 

Framing is the process of dividing a stream of data into manageable units called frames. Frames are 

essential in data communication as they help the sender and receiver identify the beginning and end 

of a message. They also facilitate the efficient handling and error detection of data as it travels over 

the network. 

Framing can be achieved in different ways, depending on how the data is represented and 

transmitted. Two common types of framing are Character-Oriented Framing and Bit-Oriented 

Framing. 

 

Character-Oriented Framing 

In Character-Oriented Framing (also called Byte-Oriented Framing), the data is treated as a 

sequence of characters (bytes), where each frame consists of one or more characters, and special 

characters are used to delimit the beginning and end of the frame. 

Characteristics: 

1. Delimiter: Specific characters (such as DLE - Data Link Escape or STX - Start of Text and ETX - 

End of Text) are used to mark the boundaries of a frame. 

2. Frame Structure: A frame consists of a sequence of characters (including data and control 

characters). 

3. Handling Special Characters: If the special delimiter characters appear within the data, they 

are escaped by adding an escape character before them to differentiate between data and 

control characters. 

Example: 

In character-oriented framing, we might use: 

• STX (Start of Text): Marks the start of a frame. 

• ETX (End of Text): Marks the end of a frame. 

Frame structure: 

STX <data> ETX 

If the data contains special characters like STX or ETX, the escape character DLE is used to ensure 

proper framing. 

Example frame: 



STX HelloDLESTXWorldETX 

Here, the character DLE is used to escape the STX character in the data. 

 

Bit-Oriented Framing 

Bit-Oriented Framing treats the data as a sequence of bits, and the boundaries of the frames are 

defined by bit patterns rather than characters. This method is more efficient for handling larger data 

streams. 

Characteristics: 

1. Delimiter: A special bit pattern (e.g., 01111110) is used to indicate the start and end of a 

frame. 

2. Bit Stuffing: If the special bit pattern appears in the data, extra bits (called stuffed bits) are 

inserted to differentiate between data and delimiters. 

3. Efficiency: This framing method is more efficient than character-oriented framing, especially 

for binary data, as it doesn't rely on character sets or escape sequences. 

Example: 

In bit-oriented framing, the pattern 01111110 (known as the Flag sequence) is used as the delimiter 

to mark the beginning and end of a frame. 

Frame structure: 

Flag <data> Flag 

If the data contains the flag pattern 01111110, bit stuffing is used to insert a 0 after every sequence 

of five consecutive 1s in the data, preventing the flag sequence from occurring in the data. 

Example: 

• Data: 01111110 (which is the flag pattern) 

• Stuffed Data: 011111101 (the extra 1 is stuffed to avoid confusion with the flag) 

Frame Example: 

Flag 011111101011111100 Flag 

 

Summary of Differences 

Aspect Character-Oriented Framing Bit-Oriented Framing 

Data 

Representation 

Data is treated as a sequence of 

characters (bytes). 
Data is treated as a sequence of bits. 

Delimiters Uses special characters (e.g., STX, ETX). Uses bit patterns (e.g., 01111110 flag). 



Aspect Character-Oriented Framing Bit-Oriented Framing 

Escape 

Mechanism 

Uses escape characters (e.g., DLE) for 

special characters. 

Uses bit stuffing to prevent delimiter 

patterns in the data. 

Efficiency 
Less efficient for large data or binary 

data. 
More efficient for large or binary data. 

Error Handling 
Relies on special characters for 

framing. 

Relies on bit patterns and stuffing for 

integrity. 

Both character-oriented and bit-oriented framing methods are widely used in data communication, 

with bit-oriented framing being more suitable for handling raw binary data, while character-oriented 

framing is simpler and often used in text-based protocols. 

Q.4.c. With low diagram, explain CSMA/CA 

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) 

CSMA/CA is a network protocol used to manage how devices on a shared communication medium 

(like Wi-Fi or wireless networks) access and transmit data. The goal is to avoid data collisions by 

detecting the carrier signal before transmission (carrier sensing) and implementing methods to avoid 

collisions (collision avoidance). 

How CSMA/CA Works: 

1. Carrier Sensing: The device listens to the channel to see if it is free or busy (i.e., whether 

other devices are transmitting). 

2. Collision Avoidance: 

o If the channel is idle, the device waits for a random amount of time (called backoff), 

then starts transmitting. 

o If the channel is busy, the device will not transmit immediately but will wait until 

the channel becomes idle and then apply backoff before transmitting. 

3. Random Backoff: The device waits for a random period (calculated using a backoff algorithm, 

usually a binary exponential backoff) to reduce the chances of collisions, especially if 

multiple devices are trying to transmit at the same time. 

4. Transmission: Once the device determines that the channel is idle and after waiting for the 

random backoff time, it starts transmitting the data. 

5. Acknowledgment: After transmission, the receiver sends an acknowledgment (ACK) back to 

the sender to confirm that the transmission was successful. 

 

Steps of CSMA/CA 

1. Carrier Sense: The device listens to the medium to check if it's clear for transmission. If it's 

idle, it proceeds; otherwise, it waits. 



2. Backoff: If the channel is busy, the device chooses a random backoff time and waits for that 

period before trying again. 

3. Transmission: After the random backoff, if the channel is still clear, the device starts sending 

data. 

4. ACK (Acknowledgment): The receiver sends an acknowledgment (ACK) to inform the sender 

that the transmission was successful. 

 

CSMA/CA Flow Diagram 

sql 

CopyEdit 

+-----------------------+ 

|  Start                | 

+-----------------------+ 

          | 

          v 

  +---------------+ 

  |  Carrier Sense | 

  +---------------+ 

          | 

    +-----+-----+ 

    |           | 

   Idle        Busy 

    |           | 

    v           v 

+-----------+   +-----------------+ 

| Transmit   |   | Wait for Idle   | 

| Data       |   | & Backoff       | 

+-----------+   +-----------------+ 

          | 

          v 

     +----------+ 

     |  ACK     | 



     +----------+ 

          | 

          v 

     +------------+ 

     |   End      | 

     +------------+ 

 

Detailed Explanation of the Diagram: 

1. Carrier Sense: 

o The device first listens to the channel to check whether it's free or occupied. 

2. Idle Channel: 

o If the channel is idle, the device immediately proceeds with data transmission. 

3. Busy Channel: 

o If the channel is busy, the device waits and checks the channel again after a backoff 

period. 

4. Transmission: 

o Once the channel becomes idle, the device waits for a small random backoff time 

before starting its transmission to reduce the chances of collision with other devices 

trying to transmit at the same time. 

5. Acknowledgment (ACK): 

o After successful transmission, the receiver sends an acknowledgment to the sender 

to confirm that the data was received correctly. 

 

Advantages of CSMA/CA: 

1. Collision Avoidance: By waiting for a random backoff time before transmission, CSMA/CA 

helps avoid direct collisions between devices. 

2. Efficient for Wireless Networks: Since it helps manage transmissions in wireless systems 

where collisions are more challenging to detect, CSMA/CA is crucial for protocols like Wi-Fi. 

 

Limitations of CSMA/CA: 

1. Hidden Node Problem: CSMA/CA cannot detect collisions if devices are out of range of each 

other but both transmit to a common receiver (hidden nodes). 

2. Performance Degradation: If too many devices use CSMA/CA, the random backoff times may 

lead to delays and reduce throughput, especially in dense networks. 



Q.5.a. Explain virtual-circuit approach network. in packet-switched  to route the packets 

Virtual-Circuit Approach in Packet-Switched Networks 

A Virtual-Circuit (VC) approach is a method used in packet-switched networks where a logical 

connection is established between the source and destination before any data is transmitted. Once 

the connection is set up, packets are sent across the network using a pre-defined path that has been 

established for the duration of the communication session. This logical connection is referred to as a 

virtual circuit, which simulates a dedicated point-to-point connection even though the physical 

connection may be shared by multiple users. 

In packet-switched networks, each packet is forwarded independently without the need for a 

dedicated physical connection. However, with virtual circuits, all packets for a given session follow 

the same path, ensuring that the packets reach their destination in the correct order and with 

reduced routing complexity. 

 

How Virtual-Circuit Networks Work: 

1. Connection Establishment: 

o Before any data transmission occurs, a virtual circuit must be established between 

the sender (source) and receiver (destination). 

o This involves negotiating the path through the network, where routers and switches 

store the virtual circuit information, such as the identifiers for the circuit, the path to 

follow, and other control information. 

o This step is similar to setting up a call in a circuit-switched network. 

o During this phase, routing information is exchanged, and the network ensures that a 

path is available between the sender and receiver. 

2. Data Transfer: 

o Once the virtual circuit is established, data (in the form of packets) is sent along the 

established path. 

o The packets contain a virtual circuit identifier (VCI) instead of a full destination 

address. This identifier tells each router or switch along the path how to forward the 

packet. 

o All packets belonging to the same virtual circuit follow the same path, ensuring that 

they reach the destination in order, and eliminating the need for reassembly. 

3. Connection Termination: 

o After the data transfer is complete, the virtual circuit is terminated, and resources 

along the path are freed. 

o This step involves sending termination signals to each router or switch that 

participated in the virtual circuit to release the allocated resources. 

 



Components of a Virtual-Circuit Network: 

1. Virtual Circuit Identifier (VCI): 

o A unique identifier for each virtual circuit established between two devices. 

o The VCI is used by routers and switches to determine how to forward packets along 

the established path. 

2. Routing Tables: 

o Routers and switches use routing tables that store the virtual circuit information 

(VCI) to forward packets. 

o The routing tables are set up during the connection establishment phase. 

3. Switches/Routers: 

o Devices in the network (like routers or switches) are responsible for forwarding 

packets based on the VCI, ensuring that packets from the same virtual circuit follow 

the same route. 

 

Virtual Circuit Types: 

1. Permanent Virtual Circuit (PVC): 

o A type of virtual circuit that is always available and is established for long-term use. 

o It remains active until explicitly terminated by the network provider (e.g., Frame 

Relay, ATM networks). 

2. Switched Virtual Circuit (SVC): 

o A virtual circuit that is dynamically set up and torn down as needed, similar to a 

telephone call. 

o The network creates and destroys the virtual circuit based on demand, typically used 

in packet-switched networks like MPLS. 

 

Routing in Virtual-Circuit Networks: 

Routing in virtual-circuit networks is different from traditional packet-switching because the path for 

the data transfer is pre-determined and established before transmission. Here's how routing works in 

virtual-circuit networks: 

1. Path Setup: 

o Before data transmission begins, a path is set up between the sender and receiver. 

o The routers along the path store information about the virtual circuit, including the 

VCI and the path to follow. 

2. Packet Forwarding: 



o Each packet in a virtual circuit carries a VCI. 

o When a router receives a packet, it checks the VCI, looks up its routing table, and 

forwards the packet along the established path. 

o The packet travels from router to router, following the same path each time, using 

the VCI to ensure proper delivery. 

3. Forwarding Table: 

o Routers maintain a forwarding table that maps the VCI to the next hop. This table is 

populated during the path setup phase. 

4. No Need for Reassembly: 

o Since all packets of a virtual circuit follow the same path, they are delivered in order 

and can be processed by the destination without reordering. 

5. Connection Termination: 

o Once the communication is complete, the virtual circuit is torn down, and the VCI 

information is erased from the routers and switches. 

 

Advantages of Virtual-Circuit Networks: 

1. Reliable Communication: 

o Since the path is established in advance, there is less chance of packet loss or out-of-

order delivery, making it reliable. 

2. Congestion Control: 

o Virtual-circuit networks can provide better congestion control because the resources 

(routers, bandwidth) for a virtual circuit are reserved, reducing the chances of 

congestion during transmission. 

3. Reduced Overhead: 

o Unlike traditional packet-switched networks, there is no need for the destination 

address to be included in every packet since the VCI takes care of routing. 

4. Efficient Bandwidth Use: 

o Virtual circuits allow the network to manage resources efficiently by reserving them 

for the duration of the connection, preventing other users from using those 

resources. 

 

Disadvantages of Virtual-Circuit Networks: 

1. Setup Delay: 

o Establishing a virtual circuit takes time, which can introduce delay in the initial 

connection setup phase. 



2. Resource Allocation: 

o Virtual circuits require the reservation of resources along the path, which may lead 

to inefficient resource utilization if circuits are idle for long periods. 

3. Scalability: 

o As the network grows, managing a large number of virtual circuits may become 

complex and resource-intensive. 

 

Example of Virtual-Circuit Approach (Connection Setup and Data Transfer): 

1. Connection Establishment: 

• Source: Initiates the connection request. 

• Routers: Create routing tables to track the path. 

• Destination: Acknowledges the connection request. 

• VCI: A unique identifier for this connection is created. 

2. Data Transfer: 

• Data packets are sent from the source, and each packet is labeled with the VCI. 

• Routers forward the packets along the established path, using the VCI to make forwarding 

decisions. 

3. Connection Termination: 

• After the data transfer is complete, a tear-down message is sent to release resources and 

delete the VCI information from the routers. 

 

Q.5.b. Illustrate the working of OSPF and BGP. 

Working of OSPF (Open Shortest Path First) 

OSPF is a link-state routing protocol used to find the best path for packets as they pass through a set 

of connected networks. It is commonly used within Autonomous Systems (AS), which are networks 

or groups of networks under the control of a single organization. 

Working of OSPF: 

1. Link-State Advertisements (LSAs): 

o OSPF routers exchange Link-State Advertisements (LSAs) to share information about 

their network links (interfaces, routers, etc.) and their status (up or down). 

o Each router sends LSA packets to its neighbors about the status of its links, which 

helps other routers in the network create a consistent map of the entire topology. 

2. Building the Link-State Database: 



o Routers use the received LSAs to build a link-state database (LSDB), which holds a 

detailed map of the entire network's topology. 

o This database is the same for all routers in the same OSPF area. 

3. Dijkstra's Algorithm: 

o Once the LSDB is built, OSPF routers use Dijkstra's Shortest Path First (SPF) 

algorithm to calculate the shortest path to every possible destination. 

o This algorithm computes the best possible route from the router to all other routers 

based on the link state information. 

4. Routing Table: 

o After calculating the shortest paths, each router updates its routing table with the 

best routes (shortest paths). 

o This routing table is then used to forward packets to the appropriate destination 

based on the shortest path. 

5. Periodic Updates: 

o OSPF routers periodically exchange LSAs to reflect changes in the network topology 

(e.g., new links, link failures, etc.). 

o This ensures that the network topology remains accurate and up to date. 

6. Areas and Hierarchical Structure: 

o OSPF divides large networks into areas to limit the scope of LSAs, reducing network 

overhead. 

o The Backbone Area (Area 0) connects all other areas in OSPF, making it central to 

the design of an OSPF network. 

o Hierarchical design helps optimize routing and manage large-scale networks. 

 

Working of OSPF – Key Steps: 

1. Router Discovery: Routers discover each other through Hello packets to form adjacencies. 

2. LSA Flooding: Routers flood LSAs to share their link-state information. 

3. Shortest Path Calculation: Routers use Dijkstra's algorithm to compute the shortest paths 

based on the LSDB. 

4. Routing Table Update: After calculating the paths, routers update their routing tables. 

 

OSPF Example: 

Imagine a network with three routers: R1, R2, and R3 connected in a triangular topology. Each router 

will send LSAs about its links, and using Dijkstra's algorithm, each router will calculate the shortest 



path to the other routers. Once the tables are populated, R1 will know the best path to R2 and R3, 

and so on. 

 

Working of BGP (Border Gateway Protocol) 

BGP is a path vector routing protocol used to exchange routing information between different 

Autonomous Systems (ASes). It is the protocol used on the internet to route data between different 

networks, making it the backbone of the Internet's routing structure. 

Working of BGP: 

1. BGP Peerings: 

o BGP routers (called BGP speakers) establish a peering relationship with other BGP 

routers using a TCP connection (port 179). 

o Peers exchange BGP UPDATE messages containing routing information about 

network prefixes, next-hop addresses, and path attributes. 

2. Routing Information Exchange: 

o BGP routers exchange routing updates to learn about network prefixes and 

reachability information from their peers. 

o Unlike OSPF, BGP does not flood the entire network with information. Instead, it only 

exchanges information between directly connected ASes. 

3. AS Path and Attributes: 

o BGP uses AS Path to track the path that data takes across different ASes. 

o BGP also uses several other attributes (like Next Hop, Local Preference, MED, AS 

Path, and Community) to determine the best path. The AS Path is a list of ASes that 

the route has traversed. 

4. Best Path Selection: 

o BGP routers use a set of rules to select the best route from multiple available routes. 

Some of the key attributes used in this decision process are: 

▪ Longest prefix match: Choose the route with the longest matching prefix. 

▪ AS Path length: Prefer routes with shorter AS paths. 

▪ Next Hop: Prefer routes with a reachable next hop. 

▪ Local Preference: Higher preference is given to routes with a higher local 

preference value. 

5. Route Aggregation: 

o BGP supports route aggregation, which reduces the number of routes exchanged 

between ASes. Instead of advertising individual IP addresses, BGP can advertise a 

range of addresses. 

6. Route Updates and Withdrawals: 



o BGP UPDATE messages are used to announce new routes, modify existing routes, or 

withdraw previously advertised routes. 

o BGP KEEPALIVE messages are used to maintain the session and ensure that the 

peering relationship is alive. 

7. Loop Prevention: 

o BGP uses the AS Path to prevent routing loops. If a route advertisement contains an 

AS that has already been traversed, the route is rejected to prevent a loop. 

 

BGP Example: 

Consider three ASes: AS1, AS2, and AS3 connected as follows: 

• AS1 is connected to AS2. 

• AS2 is connected to AS3. 

If AS1 wants to route data to AS3, BGP will advertise the route information to AS2 and AS3. AS2 will 

advertise its path information back to AS1 and AS3. AS1 then selects the best route based on BGP's 

path selection rules, considering attributes like AS Path, Next Hop, and Local Preference. 

 

Key Differences Between OSPF and BGP: 

Feature OSPF BGP 

Protocol Type Link-state protocol Path-vector protocol 

Scope 
Interior Gateway Protocol (IGP) – 

within an AS 

Exterior Gateway Protocol (EGP) – 

between ASes 

Routing 

Information 
Link-state advertisements (LSAs) Routing updates with path attributes 

Routing 

Algorithm 
Dijkstra’s Shortest Path First (SPF) 

Path selection based on AS Path and 

other attributes 

Convergence 

Time 
Fast convergence Slower convergence compared to OSPF 

Network 

Topology 

Suitable for smaller, single-AS 

networks 

Suitable for large, multi-AS networks 

(Internet) 

Metric Cost (based on link bandwidth) Path length (number of ASes) 

 

Q.6.a Explain IPv6 datagram format. 

IPv6 Datagram Format 



The IPv6 (Internet Protocol version 6) datagram is the unit of data that is transmitted across an IPv6 

network. It is designed to overcome the limitations of IPv4, especially regarding address space. An 

IPv6 datagram consists of a header and payload, with the payload containing the data being 

transmitted, such as application data. 

IPv6 Datagram Structure 

An IPv6 datagram has a fixed header size of 40 bytes, which is significantly more streamlined 

compared to the IPv4 header (which is 20 bytes but can be larger with options). The IPv6 header 

includes fields that help in routing, fragmentation, and addressing. Below is a detailed breakdown of 

the IPv6 datagram format: 

 

IPv6 Datagram Header Format: 

Field Name 
Length 

(Bits) 
Description 

Version 4 Specifies the IP version (IPv6 = 6). 

Traffic Class 8 Used for Differentiated Services (QoS) to prioritize packets. 

Flow Label 20 
Used to label packets belonging to the same flow for special 

handling. 

Payload Length 16 
Specifies the length of the payload (data) in bytes, excluding the 

header. 

Next Header 8 Identifies the type of the next header (e.g., TCP, UDP, ICMP, etc.). 

Hop Limit 8 
Specifies the maximum number of hops the packet can take before 

being discarded. 

Source Address 128 The IPv6 address of the sender. 

Destination 

Address 
128 The IPv6 address of the recipient. 

 

Explanation of IPv6 Header Fields: 

1. Version (4 bits): 

o This field indicates the version of the IP protocol. For IPv6, this value is 6. The first 4 

bits of an IPv6 datagram are always set to 0110, which corresponds to version 6. 

2. Traffic Class (8 bits): 

o This field is used for Differentiated Services (DS), allowing the network to distinguish 

and prioritize traffic based on type (e.g., voice, video, or general data). 

o It is similar to the Type of Service (TOS) field in IPv4. 



3. Flow Label (20 bits): 

o The Flow Label is used to identify packets that belong to the same flow. A flow is a 

sequence of packets from a source to a destination that requires special handling. 

o It can be used for tasks like real-time data stream management, making it useful in 

applications like VoIP and video conferencing. 

4. Payload Length (16 bits): 

o This field indicates the length of the payload (data) in the IPv6 datagram. 

o The payload length excludes the size of the IPv6 header, so this field specifies how 

much data follows the IPv6 header. 

5. Next Header (8 bits): 

o This field identifies the protocol of the layer above IPv6 (e.g., TCP, UDP, ICMP). 

o It indicates which protocol should be processed next. For example: 

▪ 6 for TCP 

▪ 17 for UDP 

▪ 58 for ICMPv6 

6. Hop Limit (8 bits): 

o This field is used to prevent packets from circulating indefinitely in the network due 

to routing loops. 

o The hop limit field is decremented by 1 by each router that processes the packet. 

When the hop limit reaches 0, the packet is discarded. 

7. Source Address (128 bits): 

o This field specifies the IPv6 address of the sender of the packet. It allows the 

recipient to know where the packet came from. 

o IPv6 addresses are represented in hexadecimal format (e.g., 

2001:0db8:85a3:0000:0000:8a2e:0370:7334). 

8. Destination Address (128 bits): 

o This field contains the destination IPv6 address where the packet is being sent. It 

specifies the end-point for the packet. 

o Like the source address, it is written in hexadecimal format and has 128 bits. 

 

IPv6 Datagram Format Example: 

Let’s assume we have the following values for the IPv6 header: 



Field Name Value 

Version 6 

Traffic Class 0x00 

Flow Label 0x00000 

Payload Length 0x0044 (68 bytes) 

Next Header 0x06 (TCP) 

Hop Limit 0x40 (64 hops) 

Source Address 2001:0db8:85a3:0000:0000:8a2e:0370:7334 

Destination Address 2001:0db8:85a3:0000:0000:8a2e:0370:1234 

In this case: 

• The datagram version is 6 (IPv6). 

• The Traffic Class is set to 0 (no special handling). 

• The Flow Label is 0x00000. 

• The Payload Length is 68 bytes. 

• The Next Header is TCP (protocol 6). 

• The Hop Limit is set to 64 hops. 

• The Source Address is 2001:0db8:85a3:0000:0000:8a2e:0370:7334. 

• The Destination Address is 2001:0db8:85a3:0000:0000:8a2e:0370:1234. 

 

IPv6 Datagram Payload: 

The payload of the IPv6 datagram contains the data being transmitted (such as TCP, UDP, or ICMP 

data). The exact structure of the payload depends on the protocol indicated in the Next Header field. 

For example: 

• If the Next Header field indicates TCP (protocol 6), the payload will contain a TCP segment. 

• If the Next Header field indicates UDP (protocol 17), the payload will contain a UDP 

datagram. 

 

Summary of IPv6 Datagram Format: 

• The IPv6 datagram has a fixed 40-byte header, followed by a payload. 

• It contains essential fields for routing, traffic management, and data delivery. 



• Key fields include Source Address, Destination Address, Flow Label, Hop Limit, and Next 

Header, which are used for routing and data forwarding across the IPv6 network. 

• IPv6 allows for a larger address space (128-bit addresses) and better handling of different 

types of traffic compared to IPv4. 

Q.6.b. Write an Dijikstra's algorithm to compute shortest path through graph 

Dijkstra's algorithm is a well-known algorithm used to find the shortest path from a source node to 

all other nodes in a graph with non-negative edge weights. Here's the step-by-step explanation and 

the Python code for Dijkstra’s algorithm: 

Dijkstra's Algorithm – Explanation 

1. Initialization: 

o Start with a source node. Initialize the shortest distance from the source to itself as 0 

and all other nodes as infinity (∞). 

o Keep track of nodes whose shortest distance is already finalized. 

2. Relaxation: 

o Select the node with the smallest tentative distance (initially the source node). 

o For each neighbor of this node, check if the tentative distance through the current 

node is smaller than the previously recorded distance for that neighbor. If so, update 

the shortest distance for that neighbor. 

3. Repeat: 

o Mark the current node as visited (finalized). 

o Select the next unvisited node with the smallest tentative distance and repeat the 

relaxation step until all nodes have been visited. 

4. Termination: 

o The algorithm terminates when all nodes have been visited, and the shortest 

distance from the source node to every other node has been calculated. 

Dijkstra’s Algorithm – Python Implementation 

def dijkstra(graph, start): 

    # Number of nodes in the graph 

    num_nodes = len(graph) 

     

    # Distance table (initialize all distances as infinity, except the start node) 

    dist = {node: float('inf') for node in range(num_nodes)} 

    dist[start] = 0 

     



    # Priority queue (min-heap) for selecting the node with the smallest distance 

    pq = [(0, start)]  # (distance, node) 

     

    while pq: 

        # Get the node with the smallest tentative distance 

        current_dist, current_node = heapq.heappop(pq) 

         

        # If the current distance is greater than the already found shortest distance, skip it 

        if current_dist > dist[current_node]: 

            continue 

         

        # Explore the neighbors of the current node 

        for neighbor, weight in graph[current_node]: 

            # Calculate the tentative distance to the neighbor 

            new_dist = current_dist + weight 

             

            # If a shorter path to the neighbor is found, update the distance and push to the priority 

queue 

            if new_dist < dist[neighbor]: 

                dist[neighbor] = new_dist 

                heapq.heappush(pq, (new_dist, neighbor)) 

     

    return dist 

 

# Example graph represented as an adjacency list 

# graph[node] = [(neighbor, weight), ...] 

graph = { 

    0: [(1, 4), (2, 1)], 

    1: [(0, 4), (2, 2), (3, 5)], 

    2: [(0, 1), (1, 2), (3, 8), (4, 10)], 

    3: [(1, 5), (2, 8), (4, 2)], 



    4: [(2, 10), (3, 2)] 

} 

 

# Compute the shortest paths from node 0 

shortest_paths = dijkstra(graph, 0) 

 

# Display the shortest distance from node 0 to every other node 

print("Shortest distances from node 0:") 

for node, dist in shortest_paths.items(): 

    print(f"Node {node}: {dist}") 

Explanation of Code: 

1. Graph Representation: 

o The graph is represented using an adjacency list. Each node has a list of tuples, 

where each tuple contains a neighboring node and the weight of the edge 

connecting them. 

2. Initialization: 

o dist: This dictionary stores the shortest distance from the start node to each node, 

initialized to infinity (float('inf')), except for the start node, which is set to 0. 

3. Priority Queue: 

o A priority queue (min-heap) is used to always expand the node with the smallest 

tentative distance. This ensures the algorithm always processes the closest unvisited 

node. 

4. Relaxation: 

o For each node processed, the algorithm checks its neighbors and updates their 

tentative distances if a shorter path is found. 

5. Output: 

o After running the algorithm, the shortest distances from the source node to all other 

nodes are printed. 

Example Execution: 

Given the graph: 

scss 

CopyEdit 

0 --(4)-- 1 --(2)-- 2 --(1)-- 0 



 \       |    |    / 

  (1)    (2)  (8) (10) 

   \     |    |   / 

    2 --(5)-- 3 

       |    |    | 

       (2) (10) (8) 

For the source node 0, the output would be: 

yaml 

CopyEdit 

Shortest distances from node 0: 

Node 0: 0 

Node 1: 4 

Node 2: 1 

Node 3: 9 

Node 4: 11 

This shows that the shortest path from node 0 to: 

• Node 1 is 4 

• Node 2 is 1 

• Node 3 is 9 

• Node 4 is 11 

Time Complexity: 

• Time Complexity: O(Elog⁡V)O(E \log V)O(ElogV), where EEE is the number of edges and VVV 

is the number of nodes. 

o The priority queue operations (insert and extract-min) take logarithmic time. 

o For each node, we process each of its neighbors. 

• Space Complexity: O(V+E)O(V + E)O(V+E), where VVV is the number of nodes and EEE is the 

number of edges, due to the storage of the graph and the distance table. 

Q.6.c. Write a note on Routing Information Protocol (RIP) algorithm. 

Routing Information Protocol (RIP) 

The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols, widely 

used in small and medium-sized networks. RIP uses hop count as its routing metric, where the 

number of hops between the source and the destination determines the best route. It is a simple and 

easy-to-configure protocol, but it has some limitations in terms of scalability and efficiency. 



Key Characteristics of RIP: 

1. Routing Metric: 

o RIP uses hop count as the metric to determine the shortest path between routers. 

Each hop represents one router passed through to reach the destination. 

o The maximum allowed hop count is 15. This means that a destination is considered 

unreachable if the hop count exceeds 15, which limits RIP to small networks. 

2. Distance Vector Protocol: 

o RIP is a distance-vector protocol, which means that each router periodically shares 

its routing table with its immediate neighbors. 

o A router updates its routing table based on the information received from its 

neighbors. The router will adopt the shortest path (lowest hop count) for each 

destination. 

3. Periodic Updates: 

o RIP routers send updates to their neighbors every 30 seconds. This ensures that 

routing information stays updated, but it can lead to network congestion and 

overhead if the network is large. 

o RIP also supports triggered updates, which are sent immediately when a significant 

change in the network occurs (e.g., a route failure). 

4. Routing Tables: 

o Each router maintains a routing table that contains the destination network, the 

next-hop router, and the metric (hop count) to reach that destination. 

o The routing table is periodically updated based on the information received from 

neighboring routers. 

5. Convergence: 

o Convergence refers to the process of all routers in the network agreeing on the best 

routes. RIP can take a long time to converge in the case of network topology 

changes, especially in larger networks. 

6. Limitations: 

o Scalability: RIP is not well-suited for large networks due to its hop count limit and 

the overhead of periodic updates. 

o Slow Convergence: RIP can experience slow convergence, which might cause routing 

loops or suboptimal routing during network changes. 

o Loop Prevention: RIP uses mechanisms like split horizon, route poisoning, and hold-

down timers to prevent routing loops. 

RIP Versions: 

There are two main versions of RIP: 



1. RIP version 1 (RIP v1): 

o RIP v1 was the original version and operates purely on classful IP addressing. It does 

not support subnetting and cannot carry subnet mask information in the routing 

updates. 

o RIP v1 only supports IPv4 addresses. 

o It uses broadcast for sending routing updates to all neighboring routers. 

2. RIP version 2 (RIP v2): 

o RIP v2 was introduced to address the limitations of RIP v1, including support for 

classless routing (CIDR) and the inclusion of subnet mask information in routing 

updates. 

o RIP v2 also supports multicast (using address 224.0.0.9) instead of broadcast for 

routing updates, which reduces unnecessary traffic. 

o It supports both IPv4 and IPv6. 

3. RIPng (RIP next generation): 

o RIPng is an extension of RIP v2 and is designed to support IPv6. 

o It is essentially RIP v2 modified to support IPv6 addressing and other features related 

to IPv6. 

Working of RIP: 

1. Initialization: 

o When a router starts up, it initializes its routing table with directly connected 

networks and the hop count is set to 0 for these routes. 

o The router sends a routing update to its neighbors, sharing the list of its direct 

routes and their associated hop counts. 

2. Route Calculation: 

o When a router receives a routing update from a neighbor, it updates its routing table 

by checking if any new routes or better routes (with a lower hop count) are available. 

o The router then recalculates the best route for each destination and updates its 

neighbors with the new information. 

3. Update and Propagation: 

o Every 30 seconds, each router sends a routing update to its neighbors. 

o The update contains the full routing table, including information about the current 

best path to each destination. 

4. Loop Prevention: 

o Split Horizon: This technique prevents a router from advertising a route back to the 

router from which it learned that route. 



o Route Poisoning: When a route becomes invalid, the router advertises the route 

with a hop count of 16 (which is considered "infinity" and unreachable). 

o Hold-down Timers: When a route is marked as unreachable, it is placed in a "hold-

down" state for a specified time, during which the router does not accept updates 

for that route. 

RIP Packet Format: 

RIP routing updates are sent in RIP packets, and the format includes: 

• Command: Indicates whether the packet is a request or a response. 

• Version: The RIP version being used (1, 2, or RIPng). 

• Authentication: Optional authentication field for security purposes (supported in RIP v2). 

• Routing Entries: A series of entries containing: 

o Destination network address 

o Metric (hop count) 

o Next-hop router (in some cases) 

Example of RIP Route Table: 

Destination Network Next Hop Metric (Hop Count) 

192.168.1.0/24 Directly connected 0 

192.168.2.0/24 192.168.1.1 1 

192.168.3.0/24 192.168.2.1 2 

192.168.4.0/24 192.168.3.1 3 

• In this table: 

o 192.168.1.0/24 is directly connected (hop count 0). 

o 192.168.2.0/24 can be reached by one hop through 192.168.1.1. 

o 192.168.3.0/24 is reached by two hops, first through 192.168.2.1, then through 

192.168.1.1. 

o 192.168.4.0/24 is reached by three hops. 

Advantages of RIP: 

• Simplicity: RIP is easy to configure and understand. 

• Widely Supported: RIP is supported by most routers and network devices. 

• Compatibility: It is a well-established protocol and works well for small networks. 

Disadvantages of RIP: 

• Limited Scalability: The 15-hop limit makes RIP unsuitable for larger networks. 



• Slow Convergence: RIP can take a long time to react to network topology changes. 

• Bandwidth Intensive: Frequent updates (every 30 seconds) can lead to unnecessary 

bandwidth consumption in larger networks. 

Q.7.a.Explain Go-Back-N protocol working. 

Go-Back-N Protocol (GBN) 

The Go-Back-N (GBN) protocol is a type of Automatic Repeat reQuest (ARQ) protocol used in 

reliable data communication. It is a ** sliding window protocol** in which the sender can send 

several frames before needing an acknowledgment for the first one, but the receiver is required to 

acknowledge frames in order. 

In Go-Back-N, the sender can transmit multiple frames in a single go (without waiting for an 

acknowledgment for each individual frame), but the receiver can only accept frames in order. If any 

frame is lost or corrupted, all subsequent frames need to be retransmitted, starting from the 

lost/corrupted frame. 

Key Features of Go-Back-N (GBN): 

1. Windowing Mechanism: Both the sender and receiver maintain a sliding window. The size 

of the window is denoted by N, where N is the number of frames that can be sent by the 

sender before receiving an acknowledgment. The sender can send N frames at a time, but 

the receiver can only accept frames in the correct order. 

2. Sequence Numbers: Each frame transmitted by the sender is assigned a sequence number. 

The sequence number helps the receiver distinguish between frames and ensures that they 

can be processed in the correct order. 

3. Cumulative Acknowledgments: The receiver sends an acknowledgment (ACK) for the last 

correctly received frame. If a frame is lost or an error occurs, the receiver will not 

acknowledge the frame, and the sender will retransmit all frames starting from the missing 

one. 

4. Retransmissions: If the sender does not receive an acknowledgment for a frame within a 

certain time (due to loss or errors), it will retransmit the frame along with all subsequent 

frames, regardless of whether they were correctly received. 

5. Timer: The sender uses a timer for each frame it sends. If the timer expires before an 

acknowledgment is received, the sender will retransmit the frame, and all frames after it. 

Working of Go-Back-N Protocol: 

The working of Go-Back-N ARQ involves the sender and receiver maintaining a sliding window, 

sending frames, receiving acknowledgments, and retransmitting lost or erroneous frames. 

Here is how it works step by step: 

1. Sender Operation: 

• The sender has a window of size N, and it can send up to N frames before receiving an 

acknowledgment. For example, if N = 4, the sender can send frames 0, 1, 2, 3 without 

waiting for an acknowledgment. 



• The sender keeps a timer for each frame sent. When a frame is sent, the timer starts. 

• If the acknowledgment for a frame is received within the timeout period, the sender slides 

the window forward by one frame. 

• If the acknowledgment is not received within the timeout period, the sender retransmits the 

frame and all subsequent frames. 

2. Receiver Operation: 

• The receiver has a window size of 1, meaning it can only accept frames in order. For 

example, the receiver will accept frame 0, then frame 1, then frame 2, and so on. 

• The receiver sends an acknowledgment (ACK) for the highest numbered frame that has been 

received in sequence. 

• If the receiver detects a missing or out-of-order frame, it discards the frame and sends an 

ACK for the last correctly received frame, indicating that the sender needs to retransmit from 

the missing frame. 

3. Acknowledgments: 

• Cumulative ACK: The receiver acknowledges the last successfully received frame. For 

instance, if frames 0, 1, and 2 are received correctly, the receiver sends an acknowledgment 

for frame 2, indicating that the sender can move on to the next set of frames. 

• Retransmission of Lost Frames: If any frame is lost or corrupted, the receiver will send an 

acknowledgment for the last correctly received frame (e.g., frame 2). The sender, upon 

receiving the acknowledgment for frame 2, knows that frame 3 and any subsequent frames 

must be retransmitted. 

Example of Go-Back-N Protocol: 

Assume N = 4, and the sender wants to transmit frames 0 to 6. 

1. The sender sends frames 0, 1, 2, 3 (since N=4). 

2. The receiver correctly receives frames 0, 1, 2, but frame 3 is lost. 

3. The receiver sends an ACK for frame 2 (the last correctly received frame). 

4. The sender, upon receiving ACK for frame 2, realizes that frame 3 is missing and retransmits 

frames 3, 4, 5, 6. 

5. The receiver correctly receives frames 3, 4, 5, 6 and sends ACK for frame 6. 

6. The sender slides its window and transmits the next set of frames (if necessary). 

Diagram of Go-Back-N Protocol: 

    Sender                               Receiver 

    +----------------------------------+  +-----------------------------+ 

    | Window Size: 4                   |  | Window Size: 1              | 

    | Frame 0  |  Frame 1  |  Frame 2  |  Frame 3  |                  | 



    +----------------------------------+  +-----------------------------+ 

    |  [ 0, 1, 2, 3 ]   --->          |  ---> Frame 0 is received     | 

    |   Timer starts for each frame   |  ---> Frame 1 is received     | 

    |    (t0)   (t1)   (t2)   (t3)     |  ---> Frame 2 is received     | 

    |  ---> Acknowledgment for frame 2 |  ---> Frame 3 is lost         | 

    |  ---> Retransmit frames 3,4,5,6  |  ---> Acknowledgment for 2   | 

    +----------------------------------+  +-----------------------------+ 

    |   Frames 3, 4, 5, 6              |   ---> Retransmit frames 3,4,5,6| 

    |  ---> Window slides to 1,2,3,4    |  ---> Acknowledgment for 6    | 

    +----------------------------------+  +-----------------------------+ 

Key Concepts in Go-Back-N: 

• Window Size (N): The number of frames the sender can send before needing an 

acknowledgment. 

• Sequence Numbering: Sequence numbers help distinguish between different frames. 

• Cumulative Acknowledgments: The receiver acknowledges all frames up to the highest one 

correctly received. 

• Retransmissions: If a frame is lost or corrupted, all subsequent frames need to be 

retransmitted. 

Advantages of Go-Back-N: 

• Efficient Use of Bandwidth: The sender can send multiple frames without waiting for each 

individual acknowledgment. 

• Simple to Implement: Go-Back-N is easy to understand and implement. 

Disadvantages of Go-Back-N: 

• Retransmission Overhead: If one frame is lost, all subsequent frames must be retransmitted, 

which can be inefficient. 

• Wasted Bandwidth: The sender may retransmit frames that were correctly received by the 

receiver. 

• Limited by Window Size: Larger window sizes require more buffer space and greater 

complexity. 

Conclusion: 

Go-Back-N is a reliable, sliding window protocol that uses cumulative acknowledgments. While it 

offers simplicity and some bandwidth efficiency, its main drawback is the inefficiency in 

retransmitting frames, especially in the case of lost or corrupted frames. This makes it suitable for 

scenarios where packet loss is minimal but less efficient in high-loss environments. 



 

Q.7.b.With neat sketch, explain three-way handshaking of ICP connection establishment 

Three-Way Handshaking for TCP Connection Establishment 

The three-way handshake is the process used to establish a connection between a client and a 

server in TCP (Transmission Control Protocol). It ensures both sides are ready to communicate and 

that they agree on the parameters for the communication, such as sequence numbers. The three-

way handshake involves three steps: 

1. SYN (Synchronize): The client initiates the connection by sending a SYN message to the 

server. 

2. SYN-ACK (Synchronize-Acknowledge): The server responds to the client’s SYN message by 

sending a SYN-ACK. 

3. ACK (Acknowledge): The client acknowledges the server’s SYN-ACK message, completing the 

handshake. 

Step-by-Step Explanation of the Three-Way Handshake: 

Step 1: SYN (Client to Server) 

• The client sends a SYN (Synchronize) packet to the server to begin the connection. 

• The SYN packet contains a randomly generated Initial Sequence Number (ISN), which is a 

unique identifier for the connection. 

Client → Server: 

• Packet: SYN, Sequence Number = X 

Step 2: SYN-ACK (Server to Client) 

• The server receives the SYN packet from the client. 

• The server responds by sending a SYN-ACK (Synchronize-Acknowledge) packet back to the 

client. 

• The SYN-ACK packet contains: 

o The Acknowledgment Number (the client’s ISN + 1) to acknowledge the receipt of 

the client’s SYN. 

o The server’s own ISN. 

Server → Client: 

• Packet: SYN, Acknowledgment Number = X + 1, Sequence Number = Y 

Step 3: ACK (Client to Server) 

• The client receives the SYN-ACK packet from the server. 

• The client sends an ACK (Acknowledge) packet back to the server to confirm the 

establishment of the connection. 



• The ACK packet contains: 

o The Acknowledgment Number (the server’s ISN + 1) to acknowledge the receipt of 

the server’s SYN. 

o The Sequence Number (the client’s ISN + 1) to acknowledge the receipt of the 

server’s SYN. 

Client → Server: 

• Packet: Acknowledgment Number = Y + 1, Sequence Number = X + 1 

Once the server receives the ACK packet from the client, the connection is fully established, and data 

transfer can begin. 

Illustration of Three-Way Handshake: 

Client                                 Server 

   |                                      | 

   |------------ SYN (X) ---------------> |  (Client sends SYN to server with ISN = X) 

   |                                      | 

   | <----------- SYN-ACK (X+1, Y) -------|  (Server responds with SYN and Acknowledgment of SYN) 

   |                                      | 

   |------------ ACK (Y+1, X+1) ---------> |  (Client acknowledges with ACK, completing the handshake) 

   |                                      | 

   |            Connection Established    | 

   |                                      | 

Details of the Three-Way Handshake: 

1. SYN from Client: The client sends a SYN packet to the server with a random initial sequence 

number (X). This marks the beginning of the connection request. 

2. SYN-ACK from Server: Upon receiving the SYN, the server responds with a SYN-ACK. It 

acknowledges the client’s sequence number by sending X + 1 as the acknowledgment 

number. The server also includes its own initial sequence number (Y). 

3. ACK from Client: The client acknowledges the server’s SYN-ACK with an ACK packet, which 

contains the server’s sequence number Y + 1 as the acknowledgment number and X + 1 as its 

own sequence number. This confirms that the client has received the SYN-ACK. 

After the three-way handshake is completed, the client and server are synchronized, and the 

connection is established, allowing data transfer to begin. 

Purpose of the Three-Way Handshake: 

• Synchronization of Sequence Numbers: Both the client and server agree on the sequence 

numbers for data transmission. 



• Ensuring Reliability: Both sides confirm that they are ready to send and receive data. 

• Establishing Communication: The handshake helps in establishing a reliable communication 

channel, ensuring both sides are aware of each other and can handle the connection. 

Q.8.a. With an outline, explain selective repeat protocol.  

Selective Repeat Protocol 

The Selective Repeat Protocol (SR) is a type of Automatic Repeat reQuest (ARQ) protocol used for 

reliable data communication. It is an enhancement of the Go-Back-N Protocol and provides more 

efficient handling of lost or corrupted frames by only retransmitting the specific frames that were 

lost or erroneous. In Selective Repeat, the sender can send multiple frames without waiting for an 

acknowledgment for each individual frame, but only the lost or erroneous frames are retransmitted. 

Key Features of Selective Repeat Protocol: 

1. Sliding Window Mechanism: 

o Both the sender and receiver maintain a sliding window. The sender's window size is 

N, which is the number of frames it can send before receiving an acknowledgment. 

The receiver’s window size is typically N/2 (for efficiency), and it can accept out-of-

order frames. 

2. Sequence Numbers: 

o Frames are assigned sequence numbers to differentiate between them. The sender 

uses these sequence numbers to identify each frame, and the receiver uses them to 

detect whether a frame is missing or out-of-order. 

3. Acknowledgments: 

o The receiver sends individual acknowledgments (ACKs) for each correctly received 

frame. It can acknowledge a frame out-of-order if the window allows. 

o If a frame is lost or corrupted, the receiver will not acknowledge it, prompting the 

sender to retransmit only that specific frame. 

4. Retransmission of Lost Frames: 

o The sender maintains a buffer of frames that have been sent but not acknowledged. 

o If the sender does not receive an acknowledgment for a particular frame within a 

given time (due to loss or corruption), it will retransmit only that specific frame, 

rather than retransmitting all subsequent frames like in Go-Back-N. 

Working of Selective Repeat Protocol: 

1. Sender's Operation: 

• The sender can send multiple frames without waiting for an acknowledgment for each 

individual frame. The sender’s window size (N) determines how many frames can be sent at 

once. 

• The sender starts a timer for each transmitted frame. 



• When the sender receives an acknowledgment for a specific frame, it slides the window 

forward. 

• If the acknowledgment for a frame is not received within a timeout period, the sender 

retransmits only that specific frame (not all frames like Go-Back-N). 

• The sender can also manage its window to avoid sending frames for which there may be 

insufficient buffer space on the receiver side. 

2. Receiver's Operation: 

• The receiver can accept frames out of order, but it will store them in a buffer until the 

missing frames are received. 

• The receiver sends an acknowledgment for each frame received in order, and each 

acknowledgment contains the sequence number of the next expected frame. 

• If a frame is missing, the receiver will not send an acknowledgment for it, prompting the 

sender to retransmit only the missing frame. 

• The receiver can buffer out-of-order frames, which will be processed once the missing 

frames arrive. 

3. Acknowledgment: 

• Each correctly received frame is acknowledged by the receiver. 

• The acknowledgment packet sent by the receiver includes the next expected sequence 

number. For example, if the receiver has correctly received frames 0, 1, and 3, it will send an 

acknowledgment for frame 2 (the next expected frame). 

• If any frame is missing or corrupted, the receiver does not acknowledge it, which indicates 

that the sender must retransmit only that frame. 

Illustration of Selective Repeat Protocol: 

Assume the sender’s window size is 4 and the receiver’s window size is 3. The sender wants to send 

frames 0, 1, 2, 3, 4, 5. 

Sender                                Receiver 

+----------------------------------+  +-----------------------------+ 

| Window Size: 4                   |  | Window Size: 3              | 

| Frame 0  | Frame 1  | Frame 2  | Frame 3  | Frame 4  | Frame 5  |  | 

+----------------------------------+  +-----------------------------+ 

| ---> Send Frame 0, 1, 2, 3       |  ---> Frame 0 is received     | 

| ---> Send Frame 4, 5             |  ---> Frame 1 is received     | 

| ---> Frame 2 is lost             |  ---> Frame 3 is lost         | 

| ---> Wait for Acknowledgments    |  ---> Frame 4 is received     | 

| ---> Retransmit Frame 2 (only)   |  ---> Acknowledgment for Frame 1 | 



| ---> Frame 3 is retransmitted    |  ---> Acknowledgment for Frame 4 | 

+----------------------------------+  +-----------------------------+ 

| ---> Frame 2 and 3 are received |  ---> Frame 2 is received     | 

| ---> Acknowledgment for 3        |  ---> Acknowledgment for Frame 2 | 

+----------------------------------+  +-----------------------------+ 

Advantages of Selective Repeat Protocol: 

1. Efficient Use of Bandwidth: Selective Repeat is more efficient than Go-Back-N, as only the 

lost or corrupted frames are retransmitted, not all subsequent frames. 

2. Lower Retransmission Overhead: Since only specific frames are retransmitted, this reduces 

the amount of retransmission, thus saving bandwidth. 

3. Better for High Error Environments: Selective Repeat works better than Go-Back-N in 

environments with a higher rate of packet loss, as it avoids retransmitting frames that have 

been successfully received. 

Disadvantages of Selective Repeat Protocol: 

1. Complexity: The protocol is more complex to implement than Go-Back-N, as it requires the 

receiver to buffer out-of-order frames and manage acknowledgments for each frame 

individually. 

2. Receiver Buffer Requirements: The receiver must have sufficient buffer space to store out-

of-order frames, which can increase memory requirements, especially in high-throughput 

scenarios. 

3. Potential for Out-of-Order Delivery: Since frames can be received out of order, the protocol 

needs mechanisms to ensure that they are processed in the correct order. 

Q.8.b List and explain various services provided by User Datagram Protocol (UDP) 

Services Provided by User Datagram Protocol (UDP) 

User Datagram Protocol (UDP) is a connectionless, lightweight protocol that operates at the 

transport layer of the OSI model. Unlike Transmission Control Protocol (TCP), UDP does not establish 

a connection before transmitting data and does not guarantee reliable delivery. Despite its lack of 

reliability, UDP provides several services that are useful in specific use cases where speed is more 

important than reliability. 

Here are the key services provided by UDP: 

1. Connectionless Communication 

• Definition: UDP is a connectionless protocol, meaning there is no need to establish a 

connection between the sender and receiver before data transmission. Each data packet 

(datagram) is sent independently. 

• Implication: This service minimizes the overhead required for establishing and maintaining a 

connection, making UDP ideal for applications where quick transmission is more critical than 

reliability (e.g., real-time applications like video streaming, online gaming). 



2. Unreliable Delivery 

• Definition: UDP does not guarantee the delivery of packets. There is no mechanism for 

acknowledgment, retransmission, or sequencing of packets. If a packet is lost or corrupted, it 

is not retransmitted by UDP. 

• Implication: This service results in faster communication but at the cost of reliability. 

Applications that use UDP are typically designed to handle packet loss and can tolerate some 

loss of data, such as voice or video communication. 

3. No Flow Control 

• Definition: UDP does not perform any flow control. It does not regulate the pace at which 

data is sent and does not ensure that the receiver can handle incoming data at the sender's 

rate. 

• Implication: This means that UDP allows the sender to transmit data as fast as possible 

without waiting for feedback from the receiver, potentially leading to network congestion or 

packet loss in scenarios where the receiver is overwhelmed. 

4. No Error Recovery 

• Definition: UDP provides error detection but does not provide error recovery. The protocol 

includes a checksum to detect errors in the data being transmitted, but there is no 

mechanism to request retransmissions or repair corrupted data. 

• Implication: While UDP can detect some errors in the data, it relies on higher layers (such as 

the application layer) to handle any necessary corrections if needed. 

5. Message Integrity (Checksum) 

• Definition: UDP includes a checksum field in its header to ensure the integrity of the data. 

The checksum is used to verify that the data has not been altered during transmission. 

• Implication: If the checksum fails, the receiver will discard the packet. However, the protocol 

does not request retransmission of the data, leaving it up to the application to handle any 

necessary recovery. 

6. Multiplexing and Demultiplexing 

• Definition: UDP provides multiplexing and demultiplexing services, allowing multiple 

applications to send and receive data over the network simultaneously. This is achieved by 

using ports to distinguish different application data streams. 

• Implication: UDP supports communication between different processes or applications 

running on the same device by providing each application with a unique port number, 

enabling multiple applications to share the same network connection. 

7. Low Overhead 

• Definition: UDP has a small header size (8 bytes) compared to TCP, which makes it a low-

overhead protocol. This is because UDP does not include features like sequencing, 

acknowledgment, or flow control that add extra information to the packet. 



• Implication: The low overhead makes UDP more efficient for transmitting small amounts of 

data or data that does not require reliability, making it suitable for real-time or latency-

sensitive applications. 

8. Low Latency 

• Definition: Since UDP does not establish a connection, does not guarantee delivery, and does 

not provide acknowledgment or flow control, the protocol has a low latency. 

• Implication: UDP is commonly used in applications where timely delivery is more important 

than reliable delivery, such as in voice over IP (VoIP), online gaming, and live streaming, 

where a slight delay in transmission can significantly degrade the user experience. 

9. Broadcast and Multicast Support 

• Definition: UDP supports broadcast and multicast communication, allowing a sender to 

transmit data to multiple receivers at once. 

• Implication: This feature is useful for applications that need to send data to multiple 

receivers simultaneously, such as network discovery protocols, video conferencing, or 

streaming services. 

Summary of Services Provided by UDP: 

Service Description 

Connectionless No need for connection establishment. 

Unreliable Delivery No guarantee of data delivery, no retransmissions. 

No Flow Control No regulation of data transmission rate. 

No Error Recovery No retransmission of lost or corrupted packets. 

Message Integrity 

(Checksum) 
Error detection with checksum for data integrity. 

Multiplexing/Demultiplexing 
Allows communication between multiple applications using unique 

ports. 

Low Overhead Minimal header size for efficient data transfer. 

Low Latency No connection setup, allowing faster data transmission. 

Broadcast/Multicast Supports communication to multiple receivers. 

Use Cases of UDP: 

• Real-time applications: Such as video and voice streaming, where speed is more important 

than ensuring every packet is delivered. 

• Online gaming: Where small data loss is often acceptable and fast transmission is critical. 

• DNS (Domain Name System): For quick queries where time-sensitive responses are required. 



• Simple request-response protocols: For applications that send a short request and receive a 

quick response without establishing a full connection. 

Q 9.a. Briefly explain Secure Shell (SSH). 

Secure Shell (SSH) 

Secure Shell (SSH) is a cryptographic network protocol used to provide secure communication over 

an unsecured network, such as the internet. SSH allows users to securely access remote systems, 

execute commands, transfer files, and perform administrative tasks. It is widely used for secure 

remote login and other secure network services, replacing older protocols like Telnet and rsh, which 

transmitted data (including passwords) in plain text and were vulnerable to interception. 

Key Features of SSH: 

1. Encryption: 

o SSH encrypts the data transmitted between the client and the server, ensuring that it 

cannot be read by unauthorized users. This protects sensitive information like 

usernames, passwords, and commands from being exposed to attackers. 

2. Authentication: 

o Public Key Authentication: SSH supports authentication using a pair of cryptographic 

keys (public and private keys). The server holds the public key, and the client uses 

the private key to prove its identity. 

o Password Authentication: In addition to public-key authentication, SSH can also use 

passwords for authentication, though this is considered less secure. 

3. Integrity: 

o SSH ensures data integrity by using cryptographic hash functions to verify that data 

has not been altered during transmission. 

4. Port Forwarding: 

o SSH can be used to forward network ports, enabling users to securely tunnel data 

from one network to another. This allows for secure browsing, file sharing, and 

accessing services that are otherwise restricted or unsafe. 

5. Secure File Transfer: 

o SSH includes tools like SFTP (Secure File Transfer Protocol) and SCP (Secure Copy 

Protocol), which are used for securely transferring files between systems over an 

SSH connection. 

6. Session Management: 

o SSH allows multiple commands or applications to run over the same secure session, 

reducing the need to repeatedly authenticate. 

7. X11 Forwarding: 



o SSH supports forwarding of X11 graphical applications. This allows users to run 

graphical applications on a remote server and have them display locally, securely, 

over the SSH connection. 

Components of SSH: 

1. SSH Client: The software used by the client to initiate a connection to an SSH server. 

Examples of SSH clients are OpenSSH, PuTTY, and WinSCP. 

2. SSH Server: The software running on the remote machine that listens for incoming SSH 

connections. OpenSSH Server is a popular implementation on Unix-like systems. 

3. SSH Protocol: The protocol defines how communication is established, authenticated, and 

encrypted between the client and server. SSH uses TCP port 22 by default. 

How SSH Works (Overview): 

1. Session Initialization: 

o The client initiates the connection to the SSH server. 

2. Key Exchange: 

o The client and server exchange cryptographic keys to establish a secure channel. This 

process involves negotiating encryption algorithms and generating shared secrets. 

3. Authentication: 

o The client authenticates itself to the server using either public key authentication or 

password authentication. 

4. Data Exchange: 

o Once authenticated, the client can send encrypted commands or files to the server. 

All communication is securely encrypted and transmitted over the established SSH 

session. 

5. Termination: 

o The session ends when the client or server closes the connection, ensuring that no 

residual data is left exposed. 

Common Use Cases of SSH: 

• Remote Login: SSH is commonly used to remotely log into Unix-like servers and systems to 

perform administrative tasks. 

• Secure File Transfers: Using tools like SFTP and SCP, SSH enables secure file transfers 

between remote systems. 

• Remote Command Execution: System administrators use SSH to remotely execute 

commands on servers without the need to physically access them. 

• Tunneling and Port Forwarding: SSH is often used to create secure tunnels for other 

services, such as securing database connections or web traffic. 

 



Q.9.b. Write a note on Request message and response message formats of HTTP 

HTTP Request and Response Message Formats 

The Hypertext Transfer Protocol (HTTP) is the foundation of data communication on the World Wide 

Web. It follows a client-server model where the client sends requests to the server, and the server 

responds with appropriate data. The communication between the client and the server is facilitated 

by two types of messages: Request Messages and Response Messages. 

1. HTTP Request Message Format 

An HTTP request message is sent by the client (usually a browser or application) to the server to 

request a resource or perform an action. The request message consists of the following components: 

1. Request Line: 

o The request line indicates the type of HTTP request (method), the resource being 

requested, and the HTTP version. 

o Format: 

<Method> <Request-URI> <HTTP-Version> 

▪ Method: Specifies the HTTP method used. Common methods include: 

▪ GET: Requests a resource. 

▪ POST: Sends data to the server (e.g., form submission). 

▪ PUT: Uploads data to a specified resource. 

▪ DELETE: Removes a specified resource. 

▪ HEAD: Requests only the headers of a resource. 

▪ OPTIONS: Requests supported HTTP methods for a resource. 

▪ Request-URI: The URI (Uniform Resource Identifier) specifies the resource 

being requested. For example, /index.html or /api/data. 

▪ HTTP-Version: The version of HTTP being used (e.g., HTTP/1.1). 

Example: 

GET /index.html HTTP/1.1 

2. Headers: 

o The headers contain additional metadata about the request, such as the type of 

content being sent, the type of data accepted, or authentication credentials. 

o Each header is a key-value pair, and multiple headers can be included in a request. 

o Common headers include: 

▪ Host: Specifies the domain name of the server. 

▪ User-Agent: Identifies the client making the request (browser, app, etc.). 



▪ Accept: Specifies the media types the client can accept (e.g., text/html, 

application/json). 

▪ Content-Type: Specifies the media type of the body of the request (e.g., 

application/x-www-form-urlencoded for form data). 

▪ Authorization: Contains credentials for authenticating the client (e.g., Bearer 

token). 

Example: 

Host: www.example.com 

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) 

Chrome/58.0.3029.110 Safari/537.36 

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8 

3. Body (Optional): 

o The body of the request contains the data being sent to the server, and it is used in 

methods like POST, PUT, and PATCH to send data (e.g., form submissions or JSON 

payloads). 

o For example, in a POST request, the body may contain data such as a form's inputs or 

JSON data. 

o Example (in a POST request): 

name=JohnDoe&email=john@example.com 

4. Example of a complete HTTP Request: 

5. makefile 

6. CopyEdit 

7. POST /submitForm HTTP/1.1 

8. Host: www.example.com 

9. User-Agent: Mozilla/5.0 

10. Content-Type: application/x-www-form-urlencoded 

11. Content-Length: 27 

12.  

13. name=JohnDoe&email=john@example.com 

 

2. HTTP Response Message Format 

An HTTP response message is sent by the server to the client in response to a request. It consists of 

the following components: 

1. Status Line: 



o The status line consists of the HTTP version, a status code, and a description of the 

status code. 

o Format: 

<HTTP-Version> <Status-Code> <Status-Message> 

▪ HTTP-Version: The version of HTTP being used (e.g., HTTP/1.1). 

▪ Status-Code: A 3-digit number that indicates the result of the request (e.g., 

200, 404, 500). 

▪ Status-Message: A short textual description of the status code (e.g., "OK", 

"Not Found", "Internal Server Error"). 

Example: 

HTTP/1.1 200 OK 

2. Headers: 

o The response headers provide metadata about the response, such as the type of 

content being returned, the length of the content, and caching instructions. 

o Common response headers include: 

▪ Content-Type: Specifies the media type of the response body (e.g., 

text/html, application/json). 

▪ Content-Length: Specifies the size of the response body in bytes. 

▪ Cache-Control: Defines caching policies (e.g., no-cache, private). 

▪ Location: Used in redirection responses to specify the URL to which the 

client should be redirected. 

▪ Server: Identifies the software running on the server (e.g., Apache, nginx). 

Example: 

Content-Type: text/html; charset=UTF-8 

Content-Length: 1234 

3. Body (Optional): 

o The body of the response contains the actual data being returned to the client, such 

as HTML content, JSON data, images, or other resources. 

o In a 200 OK response, this is typically the requested resource (e.g., a webpage, API 

response, etc.). 

o Example (in an HTML response body): 

html 

<html> 

  <head><title>Welcome</title></head> 



  <body><h1>Hello, World!</h1></body> 

</html> 

4. Example of a complete HTTP Response: 

5. php 

6. CopyEdit 

7. HTTP/1.1 200 OK 

8. Content-Type: text/html; charset=UTF-8 

9. Content-Length: 138 

10.  

11. <html> 

12.   <head><title>Welcome</title></head> 

13.   <body><h1>Hello, World!</h1></body> 

14. </html> 

 

Summary of HTTP Request and Response Message Format: 

Component Request Message Response Message 

Request Line / Status 

Line 
Method, URI, HTTP Version 

HTTP Version, Status Code, Status 

Message 

Headers 
Key-value pairs (e.g., Host, 

Content-Type) 

Key-value pairs (e.g., Content-Type, 

Content-Length) 

Body 
Data sent from client to server 

(optional) 
Data sent from server to client (optional) 

Q.10.a.. With neat diagram, explain the basic model of FTP.  

Basic Model of FTP (File Transfer Protocol) 

The File Transfer Protocol (FTP) is a standard network protocol used to transfer files between a client 

and a server over a TCP/IP network. FTP operates on a client-server model, where the client requests 

files, and the server provides those files or receives files from the client. 

FTP uses two separate channels for communication: one for command control and the other for data 

transfer. This separation ensures efficient file transfers while maintaining the structure of the 

protocol. 

Basic FTP Model 

The FTP model involves two main entities: 



1. FTP Client: A user application or program that initiates the request to retrieve or send files to 

the server. 

2. FTP Server: A system that stores files and responds to the client's requests, either providing 

requested files or accepting uploads. 

FTP uses two channels to establish communication: 

• Command Channel (Control Channel): 

o This is a persistent connection that remains open throughout the FTP session. It is 

used for sending control commands (e.g., USER, PASS, LIST, GET, PUT). 

o The command channel uses Port 21 by default for communication between the FTP 

client and server. 

• Data Channel: 

o This channel is used for the actual file data transfer (sending or receiving files). The 

data channel is opened and closed dynamically as needed, depending on the file 

transfer operations. 

o The data channel can use either Port 20 (active mode) or a dynamically assigned 

port (passive mode) for file transfer. 

 

FTP Connection Phases 

1. Connection Establishment: 

o The client connects to the FTP server on Port 21 and establishes the control 

connection. 

2. Authentication: 

o The FTP client sends a USER command to provide the username and a PASS 

command to provide the password for authentication. 

3. Command Transmission: 

o After authentication, the client sends various FTP commands through the command 

channel (e.g., LIST, RETR, STOR). 

4. Data Transfer: 

o When the client requests a file (e.g., RETR), or uploads a file (e.g., STOR), the server 

establishes the data channel for the actual file transfer. 

5. Connection Termination: 

o After the transfer is complete, the control channel is closed by sending a QUIT 

command, and the session ends. 

 

FTP Active vs Passive Mode 



1. Active Mode (PORT Mode): 

o The client sends a PORT command to the server, informing it of the port on which 

the client will listen for the incoming data connection. 

o The server then opens a connection to that port from its Port 20 and transfers data 

to the client. 

2. Passive Mode (PASV Mode): 

o The client sends a PASV command to the server, which causes the server to open a 

random high-numbered port for the data transfer. 

o The client then connects to this port to receive or send data. 

 

Diagram: Basic FTP Model 

+-----------------+                 +------------------+ 

 |    FTP Client   |                 |    FTP Server    | 

 |-----------------|                 |------------------| 

 |                 |  <--- Control --->|                  | 

 |  Port 21        |   (Port 21)      |  Port 21         | 

 |                 |                 |                  | 

 +-----------------+                 +------------------+ 

        |                                  ^ 

        |                                  | 

        |                                  |    

        |  <--- Data (File Transfer) --->  | 

        |                                  | 

        |     (Port 20 or Dynamic Port)    | 

        +----------------------------------+ 

1. Control Channel: Established on Port 21, used for communication commands. 

2. Data Channel: Established dynamically on either Port 20 (active mode) or a high-numbered 

port (passive mode), used for transferring files. 

 

Key Commands in FTP: 

1. USER: Sends the username to the server. 

2. PASS: Sends the password for authentication. 



3. LIST: Requests a directory listing from the server. 

4. RETR: Retrieves (downloads) a file from the server. 

5. STOR: Stores (uploads) a file to the server. 

6. QUIT: Terminates the FTP session. 

 

Summary of FTP Model: 

• FTP operates on a client-server model where the client requests files from the server, and 

the server responds with the requested data. 

• Two channels are used for communication: the command channel (Port 21) and the data 

channel (Port 20 or dynamic port). 

• FTP can operate in two modes: 

o Active mode (PORT), where the server initiates the data connection. 

o Passive mode (PASV), where the client initiates the data connection. 

Q.10.b. Describe the architecture of electronic mail (e-mail) 

Architecture of Electronic Mail (E-Mail) 

The electronic mail (e-mail) system is a method of exchanging digital messages between people 

using electronic devices connected via a network, such as the internet. The e-mail system follows a 

client-server architecture, where users send and receive messages using a variety of e-mail clients, 

and these messages are stored and managed by e-mail servers. Below is a detailed description of the 

architecture of e-mail: 

 

Basic Components of E-Mail System: 

1. E-Mail Client: 

o The e-mail client is the application or software that allows users to interact with the 

e-mail system. It is used to send, receive, and manage e-mail messages. 

o Popular e-mail clients include applications like Outlook, Mozilla Thunderbird, Apple 

Mail, and web-based clients like Gmail and Yahoo Mail. 

2. E-Mail Server: 

o An e-mail server is a system that stores and manages e-mail messages for users. It 

ensures that messages are delivered to the correct recipient and supports the 

protocols for message retrieval and delivery. 

o The e-mail server typically uses two main types of protocols: 

▪ SMTP (Simple Mail Transfer Protocol): Used for sending e-mails from the 

client to the server and between servers. 



▪ POP3 (Post Office Protocol version 3) / IMAP (Internet Message Access 

Protocol): Used for retrieving e-mails from the server to the client. 

 

E-Mail Architecture 

The e-mail system follows a layered architecture where each layer serves a specific function in the 

process of sending, routing, and retrieving messages. Here's how the architecture is structured: 

1. Sender Side (Sending an E-Mail) 

1. E-Mail Client (Sender's End): 

o The user creates an e-mail message using an e-mail client, specifying the recipient’s 

address, subject, body, and attachments. 

o Once the message is ready, the e-mail client sends it to the SMTP server for 

processing. 

2. SMTP Server: 

o The SMTP (Simple Mail Transfer Protocol) server is responsible for forwarding the e-

mail to the recipient's mail server. 

o The sender's SMTP server checks the recipient’s domain (e.g., example.com), looks 

up the recipient’s MX (Mail Exchange) record via DNS (Domain Name System), and 

forwards the message to the recipient's SMTP server. 

2. Mail Transfer Process (Between Servers) 

1. Mail Transfer Agents (MTAs): 

o These are the SMTP servers that relay e-mails between the sender's and recipient's 

mail servers. 

o The SMTP server ensures that the message is routed correctly to the recipient's Mail 

Delivery Agent (MDA) or Mail Retrieval Agent (MRA) for final delivery. 

2. DNS (Domain Name System): 

o The DNS system plays a vital role in determining the mail server responsible for 

receiving e-mails for a specific domain (e.g., example.com). 

o The sending SMTP server queries the DNS for the MX records associated with the 

recipient's domain. 

3. Recipient Side (Receiving an E-Mail) 

1. Recipient's Mail Server: 

o The recipient's mail server receives the e-mail message sent by the sender's SMTP 

server and stores it in the recipient's mailbox. 

o The e-mail server uses a Mail Delivery Agent (MDA) to place the e-mail into the 

appropriate mail folder or mailbox of the recipient. 

2. POP3/IMAP: 



o To retrieve the e-mail, the recipient uses a client (such as Outlook or Thunderbird) 

that communicates with the mail server using either POP3 or IMAP. 

▪ POP3 (Post Office Protocol version 3) allows users to download e-mails from 

the server to their local machine and typically removes the message from 

the server. 

▪ IMAP (Internet Message Access Protocol) allows users to view e-mails 

directly on the server without downloading them, keeping them 

synchronized across multiple devices. 

o IMAP is more suitable for users accessing e-mails from multiple devices. 

4. Final Retrieval by E-Mail Client: 

• The e-mail client retrieves the message from the mail server using POP3 or IMAP. 

• The client displays the message for the recipient to read and interact with. 

 

E-Mail Architecture Diagram: 

+---------------------+         +---------------------+       +-------------------+ 

 |                     |         |                     |       |                   | 

 |   Sender's E-Mail    |         |    Mail Transfer    |       |  Recipient's E-Mail| 

 |      Client          | ----->  |      Agent (MTA)    |-----> |       Server       | 

 |                     |         |                     |       |                   | 

 +---------------------+         +---------------------+       +-------------------+ 

                                                    |    

                                                    v 

                                            +-----------------+ 

                                            |   Mail Delivery | 

                                            |      Agent (MDA)| 

                                            +-----------------+ 

                                                    | 

                                                    v 

                                           +-------------------+ 

                                           |                   | 

                                           |  Recipient's E-Mail| 

                                           |      Client       | 

                                           |                   | 



                                           +-------------------+ 

 

Key E-Mail Protocols: 

1. SMTP (Simple Mail Transfer Protocol): 

o Used for sending and routing e-mails between servers. 

o Operates on Port 25 by default. 

o Enables communication between the client and server as well as between mail 

servers. 

2. POP3 (Post Office Protocol version 3): 

o Used for retrieving e-mails from the mail server to the client. 

o Operates on Port 110 by default. 

o Downloads e-mails to the client and removes them from the server (unless 

configured otherwise). 

3. IMAP (Internet Message Access Protocol): 

o Used for retrieving e-mails from the server while keeping them stored on the server 

for multiple device access. 

o Operates on Port 143 by default. 

o Allows the e-mail client to view, move, and manage messages on the server. 

 

Process Flow of E-Mail System: 

1. Sending: 

o The user creates an e-mail message. 

o The e-mail client sends it to the SMTP server. 

o The SMTP server forwards the message to the recipient’s mail server. 

2. Routing: 

o The e-mail travels through the mail transfer agent (MTA) and is routed using DNS. 

o The e-mail is delivered to the recipient’s mail server. 

3. Retrieving: 

o The recipient accesses their e-mail client and connects to the mail server using either 

POP3 or IMAP to retrieve the e-mail. 

o The e-mail is downloaded or viewed based on the protocol used. 

 



Q.10.c. Briefly explain Recursive Resolution and Iterative Resolution in DNS. 

Recursive Resolution vs Iterative Resolution in DNS 

The Domain Name System (DNS) is used to translate human-readable domain names (like 

www.example.com) into IP addresses that computers use to communicate over the internet. The 

process of resolving domain names involves querying DNS servers to obtain the corresponding IP 

address. DNS resolution can occur in two primary ways: recursive resolution and iterative 

resolution. 

 

1. Recursive Resolution: 

Recursive resolution is when a DNS server takes on the responsibility of fully resolving a domain 

name query. In this case, the client (usually the end user's computer) sends the query to a DNS 

resolver (often provided by the user's ISP or a third-party service like Google DNS). The DNS resolver 

then queries other DNS servers on behalf of the client until it finds the required information, such as 

the IP address for the requested domain name. 

Steps in Recursive Resolution: 

1. The client (e.g., the browser) sends a DNS query to a DNS resolver. 

2. The DNS resolver checks its local cache for the domain's IP address. If the answer is not 

cached, it queries other DNS servers. 

3. The resolver may query the root DNS server if it doesn't know the IP of the authoritative 

DNS server for the domain. 

4. The root server directs the resolver to the appropriate TLD (Top-Level Domain) DNS server 

(e.g., .com or .org). 

5. The TLD server then points the resolver to the authoritative DNS server for the specific 

domain. 

6. Finally, the authoritative DNS server provides the IP address associated with the domain. 

7. The DNS resolver returns the final answer (IP address) to the client. 

In recursive resolution, the client is relieved of having to send multiple queries. The DNS resolver 

handles all the queries and returns the final result to the client. 

 

2. Iterative Resolution: 

In iterative resolution, the DNS client (or resolver) queries each DNS server in sequence to obtain 

the required IP address. Unlike recursive resolution, the DNS server does not take full responsibility 

for resolving the query. Instead, it returns the best possible answer it knows at the time, and it is up 

to the client to follow up with further queries. 

Steps in Iterative Resolution: 

1. The client (e.g., browser or local DNS resolver) sends a DNS query to a DNS resolver. 

2. The resolver checks if it has the IP address cached. If not, it queries the root DNS server. 



3. The root server responds with a reference to the appropriate TLD DNS server for the domain 

(e.g., .com). 

4. The resolver then queries the TLD server, which responds with a reference to the 

authoritative DNS server for the domain. 

5. The resolver then queries the authoritative DNS server, which finally returns the IP address. 

6. The resolver then returns the IP address to the client. 

In iterative resolution, the resolver doesn’t fully resolve the domain name query. Instead, it provides 

the client with referrals (references) to other DNS servers until the final answer is found. 

 

Key Differences: 

Aspect Recursive Resolution Iterative Resolution 

Responsibility 
DNS resolver is responsible for 

fully resolving the query. 

The client or resolver is responsible for 

querying multiple DNS servers. 

Process 

The DNS resolver handles all 

queries and returns the final result 

to the client. 

The resolver provides references and the client 

follows up with additional queries. 

Speed 
Generally faster for the client, as 

the resolver does all the work. 

Might be slower as the client has to query 

multiple servers. 

Load on DNS 

Servers 

Puts more load on the DNS 

resolver. 

Puts less load on DNS resolvers, as they just 

provide referrals. 

Example 

A client asks a DNS resolver to find 

www.example.com, and the 

resolver does all the work. 

A client asks a DNS resolver to find 

www.example.com, and the resolver refers the 

client to the root server, which refers it to the 

TLD server, and so on. 

 

 


