Data Visualization — VTU QP Solution

The Importance of Data Visualization

Instead of just looking at data in the columns of an Excel spreadsheet, we get a better
idea of what our data contains by using visualization. For instance, it's easy to see

a pattern emerge from the numerical data that's given in the following scatter plot.

It shows the correlation between body mass and the maximum longevity of various
animals grouped by class. There is a positive correlation between body mass and
maximum longevity:
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Figure 1.1: A simple example of data visualization

Data Wrangling

Data wrangling is the process of transforming raw data into a suitable representation
for various tasks. It is the discipline of augmenting, cleaning, filtering, standardizing,
and enriching data in a way that allows it to be used in a downstream task, which in our
case is data visualization.

Look at the following data wrangling process flow diagram to understand how accurate
and actionable data can be obtained for business analysts to work on. The following
steps explain the flow of the data wrangling process:

1. First, the Employee Engagement data is in its raw form.
2. Then, the data gets imported as a DataFrame and is later cleaned.

3. The cleaned data is then transformed into graphs, from which findings can
be derived.

4. Finally, we analyze this data to communicate the final results.

For example, employee engagement can be measured based on raw data gathered

from feedback surveys, employee tenure, exit interviews, one-on-one meetings, and so
on. This data is cleaned and made into graphs based on parameters such as referrals,
faith in leadership, and scope of promotions. The percentages, that is, information
derived from the graphs, help us reach our result, which is to determine the measure of
employee engagement:
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Figure 1.2: Data wrangling process to measure employee engagement
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The different measures of dispersion are as follows:

* Variance: The variance is the expected value of the squared deviation from the
mean. It describes how far a set of numbers is spread out from their mean. Variance
is calculated as follows:
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Figure 1.6: Formula for mean
 Standard deviation: This is the square root of the variance.
* Range: This is the difference between the largest and smallest values in a dataset.

* Interquartile range: Also called the midspread or middle 50%, this is the
difference between the 75th and 25th percentiles, or between the upper and
lower quartiles.

Basic NumPy Operations

In this section, we will learn about basic NumPy operations such as indexing, slicing,
splitting, and iterating and implement them in an exercise.

Indexing

Indexing elements in a NumPy array, at a high level, works the same as with built-in
Python lists. Therefore, we can index elements in multi-dimensional matrices:

dataset[0] # index single element in outermost dimension
dataset [-1] # index in reversed order in outermost dimension
dataset[1l, 1] # index single element in two-dimensional data
dataset[-1, -1] # index in reversed order in two-dimensional data

Slicing

Slicing has also been adapted from Python's lists. Being able to easily slice parts of lists
into new ndarrays is very helpful when handling large amounts of data:

dataset[1:3] # rows 1 and 2
dataset[:2, :2] # 2x2 subset of the data
dataset[-1, ::-1] # last row with elements reversed

dataset[-5:-1, :6:2] # last 4 rows, every other element up to index 6

Splitting
Splitting data can be helpful in many situations, from plotting only half of your time-
series data to separating test and training data for machine learning algorithms.

There are two ways of splitting your data, horizontally and vertically. Horizontal
splitting can be done with the hsplit method. Vertical splitting can be done with the
vsplit method:

np.hsplit (dataset, (3)) # split horizontally in 3 equal lists
np.vsplit (dataset, (2)) # split vertically in 2 equal lists



Sorting

Sorting each row of a dataset can be really useful. Using NumPy, we are also able to sort
on other dimensions, such as columns.

In addition, argsort gives us the possibility to get a list of indices, which would result
in a sorted list:

np.sort (dataset) # values sorted on last axis
np.sort (dataset, axis=0) # values sorted on axis 0
np.argsort (dataset) # indices of values in sorted list
Combining

Stacking rows and columns onto an existing dataset can be helpful when you have two
datasets of the same dimension saved to different files.

Given two datasets, we use vstack to stack dataset_1 on top of dataset_2, which will
give us a combined dataset with all the rows from dataset_1, followed by all the rows
from dataset_2.

If we use hstack, we stack our datasets "next to each other,” meaning that the elements
from the first row of dataset_1 will be followed by the elements of the first row of
dataset_2. This will be applied to each row:

np.vstack([dataset_1, dataset_2]) # combine datasets vertically
np.hstack([dataset_1, dataset_2]) # combine datasets horizontally
np.stack([dataset_1, dataset_2], axis=0) # combine datasets on axis 0

b.

Advantages of pandas over NumPy
The following are some of the advantages of pandas:

+ High level of abstraction: pandas have a higher abstraction level than NumPy,
which gives it a simpler interface for users to interact with. It abstracts away some
of the more complex concepts, such as high-performance matrix multiplications
and joining tables, and makes it easier to use and understand.

* Less intuition: Many methods, such as joining, selecting, and loading files, are
used without much intuition and without taking away much of the powerful nature
of pandas.

* Faster ing: The internal repr ion of D: allows faster
processing for some operations. Of course, this always depends on the data and
its structure.

+ Easy DataFrame design: DataFrames are designed for operations with and on
large datasets.

Disadvantages of pandas

The ing are some of the di

ges of pandas:

* Less applicable: Due to its higher abstraction, it's generally less applicable than
NumPy. Especially when used outside of its scope, operations can get complex.

* More disk space: Due to the internal representation of DataFrames and the way
pandas trades disk space for a more performant execution, the memory usage of
complex operations can spike.

« Performance problems: Especially when doing heavy joins, which is
not recommended, memory usage can get critical and might lead to
performance problems.

« Hidden complexity: Less experienced users often tend to overuse methods and
execute them several times instead of reusing what they've already calculated. This
hidden complexity makes users think that the operations themselves are simple,
which is not the case.




Distribution Plots

Distribution plots give a deep insight into how your data is distributed. For a single
variable, a histogram is effective. For multiple variables, you can either use a box plot or
aviolin plot. The violin plot visualizes the densities of your variables, whereas the box
plot just visualizes the median, the interquartile range, and the range for each variable.

Histogram

Ahistogram visualizes the distribution of a single numerical variable. Each bar
represents the frequency for a certain interval. Histograms help get an estimate
of statistical measures. You see where values are concentrated, and you can easily
detect outliers. You can either plot a histogram with absolute frequency values or,
alternatively, normalize your histogram. If you want to compare distributions of
multiple variables, you can use different colors for the bars.

Use

Get insights into the underlying distribution for a dataset.

Example

The following diagram shows the distribution of the Intelligence Quotient (IQ) for a
test group. The dashed lines represent the standard deviation each side of the mean
(the solid line):
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Design Practice
« Try different numbers of bins (data intervals), since the shape of the histogram can
vary significantly.
Density Plot

A density plot shows the distribution of a numerical variable. It is a variation of a
histogram that uses kernel smoothing, allowing for smoother distributions. One
advantage these have over histograms is that density plots are better at determining the
distribution shape since the distribution shape for histograms heavily depends on the
number of bins (data intervals).

Use

To compare the distribution of several variables by plotting the density on the same axis
and using different colors.

Example

The following diagram shows a basic density plot:
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Box Plot

The box plot shows multiple statistical measurements. The box extends from the lower
to the upper quartile values of the data, thus allowing us to visualize the interquartile
range (IQR). The horizontal line within the box denotes the median. The parallel
extending lines from the boxes are called whiskers; they indicate the variability outside
the lower and upper quartiles. There is also an option to show data outliers, usually as
circles or diamonds, past the end of the whiskers.




Use

Compare statistical measures for multiple variables or groups.

Examples
The following diagram shows a basic box plot that shows the height of a group
of people:
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Figure 2.33: Box plot showing a single variable
Violin Plot

Violin plots are a combination of box plots and density plots. Both the statistical
measures and the distribution are visualized. The thick black bar in the center
represents the interquartile range, while the thin black line corresponds to the whiskers
in a box plot. The white dot indicates the median. On both sides of the centerline, the
density is visualized.

Use

Compare statistical measures and density for multiple variables or groups.

Examples

The following diagram shows a violin plot for a single variable and shows how students
have performed in Math:
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Figure 2.35: Violin plot for a single variable (Math)

From the preceding diagram, we can analyze that most of the students have scored
around 40-60 in the Math test.




Labels

Matplotlib provides a few label functions that we can use for setting labels to the x- and
y-axes. The plt.xlabel() and plt.ylabel () functions are used to set the label for
the current axes. The set_xlabel () and set_ylabel () functions are used to set the
label for specified axes.
Example:

ax.set_xlabel ('X Label')

ax.set_ylabel ('Y Label')

You should (always) add labels to make a visualization more self-explanatory. The same
is valid for titles, which will be discussed now.

Titles

Atitle describes a particular chart/graph. The titles are placed above the axes in the
center, left edge, or right edge. There are two options for titles - you can either set
the Figure title or the title of an Axes. The suptitle () function sets the title for the
current and specified Figure. The title () function helps in setting the title for the
current and specified axes.

Example:

fig = plt.figure()
fig.suptitle('Suptitle', fontsize=10, fontweight='bold')

This creates a bold Figure title with a text subtitle and a font size of 10:
plt.title('Title', fontsize=16)

The p1t. title function will add a title to the Figure with text as Title and font size
of 16 in this case.

Text

There are two options for text - you can either add text to a Figure or text to an Axes.
The figtext (x, y, text) and text(x, y, text) functionsadd text at locations x
or y for a Figure.

Example:

ax.text (4, 6, 'Text in Data Coords', bbox={'facecolor': 'yellow',
*alpha':0.5, ‘pad':10})

Annotations

Compared to text that is placed at an arbitrary position on the Axes, annotations are
used to annotate some features of the plot. In annotations, there are two locations to
consider: the annotated location, xy, and the location of the annotation, text xytext.
It is useful to specify the parameter arrowprops, which results in an arrow pointing to
the annotated location.

Example:

ax.annotate('Example of Annotate', xy=(4,2), xytext=(8,4),
arrowprops=dict (facecolor='green', shrink=0.05))

This creates a green arrow pointing to the data coordinates (4, 2) with the text Example
of Annotate at data coordinates (8, 4):
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Figure 3.13: Implementation of text commands




Legends

Legend describes the content of the plot. To add a legend to your Axes, we have to
specify the 1abel parameter at the time of plot creation. Calling p1t.legend () for
the current Axes or Axes.legend () for a specific Axes will add the legend. The loc
parameter specifies the location of the legend.

Example:

plt.plot([1l, 2, 3], label='Label 1')
plt.plot([2, 4, 3], label='Label 2')
plt.legend()

This example is illustrated in the following diagram:
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Figure 3.14: Legend example

Creating Figures

You can use plt.figure () to create a new Figure. This function returns a Figure
instance, but it is also passed to the backend. Every Figure-related command that
follows is applied to the current Figure and does not need to know the Figure instance.

By default, the Figure has a width of 6.4 inches and a height of 4.8 inches with a dpi
(dots per inch) of 100. To change the default values of the Figure, we can use the
parameters £igsize and dpi.

The following code snippet shows how we can manipulate a Figure:

plt.figure (figsize=(10, 5)) #To change the width and the height
plt.figure (dpi=300) #To change the dpi

Even though it is not necessary to explicitly create a Figure, this is a good practice if
you want to create multiple Figures at the same time.
Closing Figures

Figures that are no longer used should be closed by explicitly calling p1t.close (),
which also cleans up memory efficiently.

If nothing is specified, the p1t.close () command will close the current Figure. To
close a specific Figure, you can either provide a reference to a Figure instance or
provide the Figure number. To find the number of a Figure object, we can make use of
the number attribute, as follows:

plt.gef () .number

The plt.close('all') command is used to close all active Figures. The following
example shows how a Figure can be created and closed:

plt.figure (num=10) #Create Figure with Figure number 10
plt.close(10) #Close Figure with Figure number 10




Displaying Figures

plt.show () is used to display a Figure or multiple Figures. To display Figures within a
Jupyter Notebook, simply set the $matplotlib inline command at the beginning of
the code.

If you forget to use plt.show (), the plot won't show up. We will learn how to save the
Figure in the next section.

Saving Figures

The plt.savefig(fname) saves the current Figure. There are some useful optional
parameters you can specify, such as dpi, format, or transparent. The following code
snippet gives an example of how you can save a Figure:

plt.figure ()

plt.plot([1, 2, 4, 51, [1, 3, 4, 3], "-o')
plt.savefig('lineplot.png’', dpi=300, bbox inches='tight')
#bbox_inches='tight' removes the outer white margins

b.

Pie Chart
The plt.pie(x, [explode], [labels], [autopct]) function creates a pie chart.
Important parameters:

* x: Specifies the slice sizes.

* explode (optional): Specifies the fraction of the radius offset for each slice. The
explode-array must have the same length as the x-array.

« labels (optional): Specifies the labels for each slice.

* autopct (optional): Shows percentages inside the slices according to the specified
format string. Example: ' $1.1£%%".

Example:

plt.pie([0.4, 0.3, 0.2, 0.1], explode=(0.1, 0, O, 0), labels=['A', 'B',
ct, 'D'])

The result of the preceding code is visualized in the following diagram:
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Figure 3.19: Basic pie chart




Scatter Plot

Scatter plots show data points for two numerical variables, displaying a variable on both
axes.plt.scatter (x, y) creates a scatter plot of y versus x, with optionally varying
marker size and /or color.

Important parameters:
* x,y: Specifies the data positions.
» s:(optional) Specifies the marker size in points squared.

* c: (optional) Specifies the marker color. If a sequence of numbers is specified, the
numbers will be mapped to the colors of the color map.

Example:
plt.scatter(x, y)

The result of the preceding code is shown in the following diagram:
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Figure 3.31: Scatter plot

Color Palettes

Color is a very important factor for your visualization. Color can reveal patterns in
data if used effectively or hide patterns if used poorly. Seaborn makes it easy to select
and use color palettes that are suited to your task. The color_palette () function
provides an interface for many of the possible ways to generate color palettes.

The seaborn.color_palette([palette], [n_colors], [desat]) command
returns a list of colors, thus defining a color palette.

The parameters are as follows:
* palette (optional): Name of palette or None to return the current palette.

* n_colors (optional): Number of colors in the palette. If the specified number of
colors is larger than the number of colors in the palette, the colors will be cycled.

* desat (optional): The proportion to desaturate each color by.

You can set the palette for all plots with set_palette (). This function accepts the
same arguments as color_palette (). In the following sections, we will explain how
color palettes are divided into different groups.



Categorical Color Palettes

Categorical palettes (or qualitative color palettes) are best suited for distinguishing
categorical data that does not have an inherent ordering. The color palette should
have colors as distinct from one another as possible, resulting in palettes where
mainly the hue changes. When it comes to human perception, there is a limit to how
many different colors are perceived. A rule of thumb is that if you have double-digit
categories, it is advisable to divide the categories into groups. Different shades of color
could be used for a group. Another way to keep groups apart could be to use hues that
are close together in the color wheel within a group and hues that are far apart for
different groups.

Some examples where it is suitable to use categorical color palettes are line charts
showing stock trends for different companies, and a bar chart with subcategories;
basically, any time you want to group your data.

There are six default themes in Seaborn: deep, muted, bright, pastel, dark, and
colorblind. The code and output for each theme are provided in the following
diagram. Out of these color palettes, it doesn't really matter which one you use. Choose
the one you prefer and the one that best fits the overall theme of the visualization. It's
never a bad idea to use the colorblind palette to account for colorblind people. The
following is the code to create a deep color palette:

import seaborn as sns
palettel = sns.color palette("deep")
sns.palplot (palettel)

Sequential Color Palettes

Sequential color palettes are appropriate for sequential data ranges from low to high
values, or vice versa. It is recommended to use bright colors for low values and dark
ones for high values. Some examples of sequential data are absolute temperature,
weight, height, or the number of students in a class.

One of the sequential color palettes that Seaborn offers is cubehelix palettes. They have
a linear increase or decrease in brightness and some variation in hue, meaning that
even when converted to black and white, the information is preserved.

The default palette returned by cubehelix palette () is illustrated in the following
diagram. To customize the cubehelix palette, the hue at the start of the helix can be set
with start (a value between 0 and 3), or the number of rotations around the hue wheel

can be set with rot:

Figure 4.20: Cubehelix palette

Creating custom sequential palettes that only produce colors that start at either light
or dark desaturated colors and end with a specified color can be accomplished with
light_palette () or dark_palette (). Two examples are given in the following:

custom_palette2 = sns.light_palette("magenta")
sns.palplot (custom_palette2)




Diverging Color Palettes

Diverging color palettes are used for data that consists of a well-defined midpoint. An
emphasis is placed on both high and low values. For example, if you are plotting any
population changes for a particular region from some baseline population, it is best to
use diverging colormaps to show the relative increase and decrease in the population.
The following code snippet and output provides a better understanding of diverging
plots, wherein we use the coolwarm template, which is built into Matplotlib:

custom palette4 = sns.color palette("coolwarm", 7)
sns.palplot (custom paletted)

b.
Seaborn Figure Styles

To control the plot style, Seaborn provides two methods: set_style (style, [rcl)
and axes_style(style, [rc]).

seaborn.set_style(style, [rc]) sets the aesthetic style of the plots.
Parameters:

* style: A dictionary of parameters or the name of one of the following
preconfigured sets: darkgrid, whitegrid, dark, white, or ticks

¢ rc (optional): Parameter mappings to override the values in the preset Seaborn-
style dictionaries

Here is an example:

g$matplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style ("whitegrid")

plt.figure ()
x1l = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

plt.plot(xl, label='Group A')
plt.plot(x2, label='Group B')
plt.legend ()

plt.show()

This results in the following plot:
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Figure 4.4: Seaborn line plot with whitegrid style



seaborn.axes_style(style, [rel) returns aparameter dictionary for the
aesthetic style of the plots. The function can be used in a wi th statement to
temporarily change the style parameters.

Here are the parameters:

* style: A dictionary of parameters or the name of one of the following
pre-configured sets: darkgrid, whitegrid, dark, white, Or ticks

* rc(optional): Parameter mappings to override the values in the preset
Seaborn-style dictionaries

Here is an example:

$matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

sns.set ()

plt.figure ()

xl = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

with sns.axes_style('dark'):
plt.plot(x1l, label='Group A')
plt.plot (x2, label='Group B')

plt.legend()

plt.show ()

The aesthetics are only changed temporarily. The result is shown in the
following diagram:
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Removing Axes Spines

Sometimes, it might be desirable to remove the top and right axes spines. The
despine () function is used to remove the top and right axes spines from the plot:

seaborn.despine (fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False)

The following code helps to remove the axes spines:

gmatplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style ("white")
plt.figure ()

x1 = [10, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]
plt.plot(x1l, label='Group A')
plt.plot(x2, label='Group B')
sns.despine ()

plt.legend()

plt.show()

This results in the following plot:
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Figure 4.6: Despined Seaborn line plot

Kernel Density Estimation

Itis often useful to visualize how variables of a dataset are distributed. Seaborn offers
handy functions to examine univariate and bivariate distributions. One possible way
to look at a univariate distribution in Seaborn is by using the distplot () function.
This will draw a histogram and fit a kernel density estimate (KDE), as illustrated in the
following example:

$matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as
d.read_csv('../../Da
plot (data 1, 'Age'])
el (*Age’)

el ('Density')

s/age_salary_hours.csv')

‘The result is shown in the following diagram:
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Figure 4.30: KDE with a histogram for a univariate distribution

o

To just visualize the KDE, Seaborn provides the kdeplot () function:
sns.kdeplot (data.loc{:, 'Age'], shade=True)

abel ('Age')

abel ('Density')




The KDE plot is shown in the following diagram, along with a shaded area under
the curve:
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Figure 4.31: KDE for a univariate distribution

Plotting Bivariate Distributions

For visualizing bivariate distributions, we will introduce three different plots. The
first two plots use the jointplot () function, which creates a multi-panel figure
that shows both the joint relationship between both variables and the corresponding
marginal distributions.

A scatter plot shows each observation as points on the x and y axes. Additionally,
a histogram for each variable is shown:

import pandas as pd

import seaborn as sns

data = pd.read _csv('../../Datasets/age_salary hours.csv')
sns.set (style="white™)

sns.jointplot (x="Annual Salary", y="Age", data=data))

The scatter plot with marginal histograms is shown in the following diagram:
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Figure 4.32: Scatter plot with marginal histograms

It is also possible to use the KDE procedure to visualize bivariate distributions. The joint
distribution is shown as a contour plot, as demonstrated in the following code:

sns.jointplot ('Annual Salary', 'Age', data=subdata, kind='kde', xlim=(0,
500000), ylim=(0, 100))




b.

Removing Axes Spines

Sometimes, it might be desirable to remove the top and right axes spines. The
despine () function is used to remove the top and right axes spines from the plot:

seaborn.despine (fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False)

The following code helps to remove the axes spines:

%matplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style ("white")
plt.figure ()

x1 [i0, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]
plt.plot(xl, label='Group A')
plt.plot (x2, label='Group B')
sns.despine ()

plt.legend()

plt.show ()

This results in the following plot:
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Figure 4.6: Despined Seaborn line plot

The following example demonstrates the usage of violin plots:

import pandas as pd

import seaborn as sns

data = pd.read_csv("../../Datasets/salary.csv")
sns.set (style="whitegrid")

sns.violinplot ('Education', 'Salary', hue='Gender', data=data, split=True,
cut=0

The result appears as follows:
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0 L
Academic degree High schoal diploma No diploma
Education
Figure 4.35: Seaborn violin plot
The violin plot shows both statistical and the probability distribution. The

data is divided into education groups, which are shown on the x-axis, and gender
groups, which are highlighted by different colors.

With the next activity, we will conclude the section about advanced plots. In this
section, multi-plots in Seaborn are introduced
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Figure 5.1: Conceptual architecture of geoplotlib

geoplotlib uses the concept of layers that can be placed on top of one another,
providing a powerful interface for even complex visualizations. It comes with several
common visualization layers that are easy to set up and use.

From the preceding diagram, we can see that geoplotlib is built on top of NumPy/
SciPy and Pyglet/OpenGL. These libraries take care of numerical operations and
rendering. Both components are based on Python, therefore enabling the use of the
full Python ecosystem.

The Design Principles of geoplotlib

Taking a closer look at the internal design of geoplotlib, we can see that it is built
around three design principles:

« Integration: geoplotlib visualizations are purely Python-based. This means
that generic Python code can be executed, and other libraries such as pandas
can be used for data wrangling purposes. We can manipulate and enrich our
datasets using pandas DataFrames and later convert them into a geoplotlib
DataAccessObject, which we need for optimal compatibilities, as follows:

import pandas as pd
from geoplotlib.utils import DataAccessObject

# data wrangling with pandas DataFrames here
dataset_obj = DataAccessObject (dataset_filtered)

geoplotlib fully integrates into the Python ecosystem. This even enables us to plot
geographical data inline inside our Jupyter Notebooks. This possibility allows us to
design our visualizations quickly and iteratively.

» Simplicity: Looking at the example provided here, we can quickly see that
geoplotlib abstracts away the complexity of plotting map tiles and already-provided
layers such as dot density and histogram. It has a simple API that provides
common visualizations. These visualizations can be created using custom data
with only a few lines of code.

+ Performance: As we mentioned before, geoplotlib can handle large amounts of data
due to the use of NumPy for accelerated numerical operations and OpenGL for
accelerated graphical rendering.

b.
Adding Widgets

One of the most powerful features of Bokeh is the ability to use widgets to interactively
change the data that's displayed in a visualization. To understand the importance of
interactivity in your visualizations, imagine seeing a static visualization about stock
prices that only shows data for the last year.




# importing the widgets

from ipywidgets import interact, interact_manual

# creating an input text

@interact (Value='Input Text')
def text_input(Value):
print (Value)

The following screenshot shows the output of the preceding code:

Value | Input Text
Input Text

Figure 6.22: Interactive text input

Bokeh is an interactive visualization library focused on modern browsers and the web.
Other than Matplotlib or geoplotlib, the plots and visualizations we are going to create
in this chapter will be based on JavaScript widgets. Bokeh allows us to create visually
appealing plots and graphs nearly out of the box without much styling. In addition to
that, it helps us construct performant interactive dashboards based on large static
datasets or even streaming data.

Bokeh has been around since 2013, with version 1.4.0 being released in November 2019.
It targets modern web browsers to present interactive visualizations to users rather
than static images. The following are some of the features of Bokeh:

« Simple visualizations: Through its different interfaces, it targets users of many skill
levels, providing an API for quick and straightforward visualizations as well as more
complex and extremely customizable ones.

* Excellent animated visualizations: It provides high performance and can,
therefore, work on large or even streaming datasets, which makes it the go-to
choice for animated visualizations and data analysis.

« Inter-visualization interactivity: This is a web-based approach; it's easy
to combine several plots and create unique and impactful dashboards with
visualizations that can be interconnected to create inter-visualization interactivity.

* Supports multiple languages: Other than Matplotlib and geoplotlib, Bokeh
has libraries for both Python and JavaScript, in addition to several other
popular languages.

Multiple ways to perform a task: Adding interactivity to Bokeh visualizations can
be done in several ways. The simplest built-in way is the ability to zoom and pan in
and out of your visualization. This gives the users better control of what they want
to see. It also allows users to filter and transform the data.

.

Beautiful chart styling: The tech stack is based on Tornado in the backend and is
powered by D3 in the frontend. D3 is a JavaScript library for creating outstanding
visualizations. Using the underlying D3 visuals allows us to create beautiful plots
without much custom styling.




Bokeh Server

Bokeh creates scene graph JSON objects that will be interpreted by the BokehlS library
to create the visualization output. This process gives you a unified format for other
languages to create the same Bokeh plots and visualizations, independently of the
language used.

To create more complex visualizations and leverage the tooling provided by Python,
we need a way to keep our visualizations in sync with one another. This way, we can
not only filter data but also do calculations and operations on the server-side, which
updates the visualizations in real-time.

In addition to that, since we will have an entry point for data, we can create
visualizations that get fed by streams instead of static datasets. This design provides a
way to develop more complex systems with even greater capabilities.

Looking at the scheme of this architecture, we can see that the documents are
provided on the server-side, then moved over to the browser, which then inserts it into
the BokehlS library. This insertion will trigger the interpretation by BokehlJS, which

will then create the visualization. The following diagram describes how the Bokeh
server works:

Bokeh Server
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c.
Voronoi Tessellation

In a Voronoi tessellation, each pair of data points is separated by a line that is the same
distance from both data points. The separation creates cells that, for every given point,
marks which data point is closer. The closer the data points, the smaller the cells.

The following example shows how you can simply use the voronei method to create
this visualization:

# plotting our dataset as voronoi plot
gecplotlib.voronoi (dataset_filtered, line color='b')
geoplotlib.set_smoothing (True)

geoplotlib.show ()

As we can see, the code to create this visualization is relatively short.

After importing the dependencies we need, we read the dataset using the read_csv
method of pandas (or geoplotlib). We then use it as data for our vorenei method, which
handles all of the complex logic of plotting the data on the map.

In addition to the data itself, we can set several parameters, such as general smoothing
using the set_smoothing method. The smoothing of the lines uses anti-aliasing:




Delaunay Triangulation

A Delaunay triangulation is related to Voronoi tessellation. When connecting each
data point to every other data point that shares an edge, we end up with a plot that
is triangulated. The closer the data points are to each other, the smaller the triangles
will be. This gives us a visual clue about the density of points in specific areas. When
combined with color gradients, we get insights about points of interest, which can be
compared with a heatmap:

# plotting our dataset as a delaunay
geoplotlib.delaunay(dataset filtered, cmap='hot r')
geoplotlib.set smoothing (True)

geoplotlib.show ()

What is a Socket?

A socket is an endpoint for sending or receiving data across a network. It acts as an interface

between an application and the underlying network protocol (TCP/IP, UDP, etc.).
+ In TCP/IP networking, a socket is identified by:
* |P Address (e.g., 192.168.1.1)
e Port Number (e.g., 8080 )

« Protocol (e.g., TCP or UDP)

How Socket Connection is Established Over TCP/IP

TCP (Transmission Control Protocol) is a connection-oriented protocol, meaning it requires a

handshake before data transfer. A socket connection over TCP/IP is established in three main steps:

1. Socket Creation

Both the client and server create a socket using a programming language (e.g., Python, Java, C++).

The server binds its socket to an IP address and port.
2. TCP Three-Way Handshake
Before communication begins, TCP performs a three-way handshake to establish a connection:

Step 1: SYN (Synchronize)

« The client sends a SYN request to the server to initiate a connection.

Step 2: SYN-ACK (Acknowledge)

« The server responds with a SYN-ACK to confirm the connection request.

Step 3: ACK (Acknowledge)

* The client sends an ACK to finalize the connection.

Now, the socket connection is established, and data transmission can begin.




3. Data Transmission

Once the connection is established, the client and server can exchange data bidirectionally using

send() and recv() functions.

4. Closing the Connection

When communication is complete, the connection is closed using the FIN (Finish) and ACK

(Acknowledge) process.

b.
13.4 JavaScript Object Notation - JSON

The JSON format was inspired by the object and array format used in the
JavaScript language. But since Python was invented before JavaScript, Python’s
syntax for dictionaries and lists influenced the syntax of JSON. So the format of
JSON is nearly identical to a combination of Python lists and dictionaries.

Here is a JSON encoding that is roughly equivalent to the simple XML from above:

{
"name" : "Chuck",
"phone" : {
"type" : "intl",
"number" : "+1 734 303 4456"
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¥,
"email™ : {
"hide" : "yes"
}
}

You will notice some differences. First, in XML, we can add attributes like “intl”
to the “phone” tag. In JSON, we simply have key-value pairs. Also the XML
“person” tag is gomne, replaced by a set of outer curly braces.

In general, JSON structures are simpler than XML because JSON has fewer ca-
pabilities than XML. But JSON has the advantage that it maps direetly to some
combination of dictionaries and lists. And since nearly all programming languages
have something equivalent to Python’s dictionaries and lists, JSON is a very nat-
ural format to have two cooperating programs exchange data.

JSON is quickly becoming the format of choice for nearly all data exchange between
applications because of its relative simplicity compared to XML.
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13.5 Parsing JSON

We construct our JSON by nesting dictionaries and lists as needed. In this example,
we represent a list of users where each user is a set of key-value pairs (ie., a
dictionary). So we have a list of dictionaries.

In the following program, we use the built-in json library to parse the JSON and
read through the data. Compare this closely to the equivalent XML data and code
above. The JSON has less detail, so we must know in advance that we are getting a
list and that the list is of users and each user is a set of key-value pairs. The JSON
is more succinct (an advantage) but also is less self-describing (a disadvantage).

import json

data = '"'
[
{ Hidn : |P001H
ngn . omgw
"name" : "Chuck"
T8
{ Uidn : "009”,
ngn oo owgw
"name" : "Brent"
}
] [N

info = json.loads(data)
print('User count:', len(info))

for item in info:
print('Name', item['name'])
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print('Id', item['id'])
print('Attribute', item['x'])

# Code: https://wuww.pyde.com/code3/json2.py

If you compare the code to extract data from the parsed JSON and XML you will
see that what we get from json.loads() is a Python list which we traverse with
a for loop, and each item within that list is a Python dictionary. Once the JSON
has been parsed, we can use the Python index operator to extract the various bits
of data for each user. We don’t have to use the JSON library to dig through the
parsed JSON;, since the returned data is simply native Python structures.

The output of this program is exactly the same as the XML version above.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7




13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured than HTML. Here
is a sample of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">
+1 734 303 4456
</phone>
<email hide="yes" />
</person>

Each pair of opening (e.g., <person>) and closing tags (e.g., </person>) represents
a element or node with the same name as the tag (e.g., person). Each element
can have some text, some attributes (e.g., hide), and other nested elements. If
an XML element is empty (i.e., has no content), then it may be depicted by a
self-closing tag (e.g., <email />).

Often it is helpful to think of an XML document as a tree structure where there is
a top element (here: person), and other tags (e.g., phone) are drawn as children
of their parent elements.
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person

type=intl

+1734
[ Chliek j [3034456j

Figure 13.1: A Tree Representation of XML




13.2 Parsing XML

Here is a simple application that parses some XML and extracts some data elements
from the XML:

import xml.etree.ElementTree as ET

</phone>
<email h

tree = ET.fromstring(data)
i , tree.find('n:
, tree.find('

') .text)
i1').get('hide'))

The triple single quote (' '), as well as the triple double quote ("""), allow for
the creation of strings that span multiple lines.

Calling fromstring converts the string representation of the XML into a “tree” of
XML elements. When the XML is in a tree, we have a series of methods we can
IL string. The find function s
through the XML tree and retrieves the element that matches the specified tag.

call to ext from the

act portions of da ches

Name: Chuck
Attr: yes

Using an XML parser such as ElementTree has the advantage that while the
XML in this example is quite simple, it turns out there are many rules regarding
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valid XML, and using ElementTree allows us to extract data from XML without
worrying about the rules of XML syntax.

requests
bs4 BeautifulSoup

url =

response = requests.get(url)

print( , soup.title.string)

print( )
para soup. find_all(
print(para.text)

print( )
link soup.find_all(
print(link.get( ))



3. Explanation
requests.get(url) : Fetches HTML content from the webpage.
BeautifulSoup(html, "html.parser") : Parses the HTML.
soup. title.string : Extracts the page title.
soup. find_all("p") : Finds all paragraph ( <p> ) tags.

soup.find_all("a") : Finds all anchor ( <a> ) tags and extracts links.

. Output Example

Page Title: Example Domain

Paragraphs:

This domain is use illustrative examples documents.
Links:

https://www.iana.org/domains/example




