50, will be treated as malpractice.

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 -

21CS743

I -Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025
/ Deep Learning

Max. Marks: 100
ote: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Explain the concept of tasks(T), Performance (P) and Experience (E). Describe the
following with respect to tasks performance and experience.
1) Checker learning problem

i1) Handwriting recognition learning problem (12 Marks)

Explain the concept of supervised and unsupervised learning with example. (08 Marks)
OR

Explain the historical trends in deep learning. (10 Marks)

Define supervised and unsupervised learning algorithm. Describe KNN and K means
algorithm. (10 Marks)

Module-2
Explain about gradient based learning. (10 Marks)
Explain the concept of Back propagation and how it helps in a Neural network. (10 Marks)

OR
Define Regularization. Describe L' and L regularization. (10 Marks)

1 1 0 1
Given W = L]—’. C= [J. W= { ,)}and b = (0 draw feed forward network and evaluate

XOR function. (10 Marks)
Module-3
What are the challenges in neural network optimization? (10 Marks)

Explain the following algorithms
i) RMSProp
1)) RMSProp with momentum. (10 Marks)

OR
Explain stochastic gradient descent and momentum algorithms (10 Marks)

1 of2

10

21CS743

Give the list of adaptive learning rates algorithms. Write the Ada Grad algorithm. (10 Marks)

Module-4
Explain the following with suitable diagram.
i) Sparse interactions ii) Parameter sharing. ' (10 Marks)
Explain briefly variant of the CNN models. (10 Marks)
OR
Differentiate locally connected layers, tiled convolution and standard convolution with
suitable example and diagram. (10 Marks)

Explain the different layers in CNN models and its function with a neat diagram. (10 Marks)

Module-5
Discuss about Bidirectional Recurrent neural networks. (10 Marks)

What is speech recognition? Explain the different types of speech recognition systems.

(10 Marks)

CMRIT LIBRARY

OR BANGALORE - 560 037
Explain Long Short-Team Memory (LSTM) working principles along with all the equations.
(10 Marks)

What is Natural language processing? Explain different steps involved in NLP. (10 Marks)

% ok ok ok

2 of 2

Seventh Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025
21CS743 - Deep Learning
Note: Answer any FIVE full questions, choosing ONE full question from each module.
Module -1

1. a. Explain the concept of tasks(T), Performance (P) and Experience (E).
Describe the following with respect to tasks performance and experience. i)Checker
learning problem ii) Handwriting recognition learning problem (12 Marks)

Machine learning tasks are usually described in terms of how the

machine learning system should process an example. An example is a collection of
features that have been quantitatively measured from some object or event that we
want the machine learning system to process. We typically represent an example as
a vector x € Rn where each entry xi of the vector is another feature.

We often refer to the error rate as the expected 0-1 loss. The 0-1 loss on

a particular example is 0 if it is correctly classified and 1 if it is not. For tasks such as
density estimation, it does not make sense to measure accuracy, error rate, or any

other kind of 0-1 loss. Instead, we must use a different performance metric that gives the
model a continuous-valued score for each example. The most common approach is to
report the average log-probability the model assigns to some examples.

Experience (E): This is the information used to learn or improve the task. It can include
historical data, labeled examples, or interactive feedback. The more diverse and extensive
the experience, the better the model can generalize.

Checker Learning Problem with Respect to T, P, and E:
The Checker Learning Problem is a classic example from game Al, where a program
learns to play the game of checkers:

1. Task (T): The task is to play checkers at an expert level, aiming to win games against
opponents.

2. Performance (P): Performance is measured by the percentage of games won against a
range of opponents, including other AI and human players. Success is reflected in the win
rate and the quality of moves.

Experience (E): Experience comes from playing games of checkers, either by playing
against itself (self-play) or by learning from historical games. The Al can analyze past
moves, outcomes, and strategies to refine its decision-making.

The Handwriting Recognition Learning Problem with Respect to T, P, and E:
(focuses on enabling a machine to recognize handwritten text accurately)

Task (T):

The task is to recognize and interpret handwritten characters or words from images or
digital input. This involves classifying characters based on their shape and style.
Performance (P):

Performance is evaluated using accuracy or error rate—the percentage of correctly
recognized characters or words out of the total input. Higher accuracy indicates better
performance.

Experience (E):

Experience comes from a labeled dataset of handwritten samples. For example, in the
MNIST dataset, images of handwritten digits (0-9) are labeled with their respective
values. The more diverse the dataset, the better the model generalizes to different
handwriting styles.

b) Explain the concept of supervised and unsupervised learning with example. (08
Marks)

Supervised learning algorithms are, roughly speaking, learning algorithms that learn to
associate some input with some output, given a training set of examples of inputs x and
outputs y.

Example : k-nearest neighbors is not restricted to a fixed number of parameters.

We usually think of the k-nearest neighbors algorithm as not having any parameters,
but rather implementing a simple function of the training data. In fact, there is not
even really a training stage or learning process. Instead, at test time, when we want
to produce an output y for a new test input x, we find the k-nearest neighbors to x in
the training data X. We then return the average of the corresponding y values in the
training set. This works for essentially any kind of supervised learning where we can
define an average over y values.

Unsupervised Learning Algorithms : Informally, unsupervised learning refers to most
attempts to extract information from a distribution that do not require human labor to
annotate examples.

Example ; Principal Component Analysis (PCA) is a dimensionality reduction
technique used in machine learning and statistics. It simplifies large datasets by
transforming them into a new coordinate system with fewer dimensions, while retaining
as much variability (information) as possible.

2 a. Explain the historical trends in deep learning. (10 Marks)

1. Deep learning has had a long and rich history but has gone by many names reflecting
different philosophical viewpoints and has waxed and waned in popularity.

2.Deep learning has become more useful as the amount of available training data has
increased.

e
X in°
1 Q.
ey T Fnnrta TN
1H° : -
B 1R° (Crimi Jrevoe onia
I.D 1k , (...L .QT--......p.n:‘. 1
I S 41 a7 T EEE
t g ittt L cytrbs e it ' Gl
n 4 o
: o g o AnA ah1c
-y @A e E

3. Deep learning models have grown in size over time as computer infrastructure (both
hardware and software) for deep learning has improved.

D 10— e ()

1950 1985 2000 2015
4.Deep learning has solved increasingly complicated applications with increasing
accuracy over time.

I
o —— 7 *—(Fuman)
8 10
i 100 E 17 20 - P
th 108 [- Octopus
107 [1 / “~(Frog
m
i %82 - = _:\
. = -
N R i
ool N “JE e
u 10°f 0 A
m 10_ 1 m 7 -
10 2 ' ' : |
b 1950 1985 2000 2015 2056

b. Define supervised and unsupervised learning algorithm. Describe KNN and K
means algorithm. (10 Marks)

Supervised learning algorithms are, roughly speaking, learning algorithms that learn to
associate some input with some output, given a training set of examples of inputs x and
outputs y.

Unsupervised Learning Algorithms : Informally, unsupervised learning refers to most
attempts to extract information from a distribution that do not require human labor to
annotate examples.

k-nearest neighbors is not restricted to a fixed number of parameters.

We usually think of the k-nearest neighbors algorithm as not having any parameters,
but rather implementing a simple function of the training data. In fact, there is not
even really a training stage or learning process. Instead, at test time, when we want
to produce an output y for a new test input x, we find the k-nearest neighbors to x in
the training data X. We then return the average of the corresponding y values in the
training set. This works for essentially any kind of supervised learning where we can
define an average over y values

When there is infinite training data, all test points x will have infinitely

many training set neighbors at distance zero. If we allow the algorithm to use all of
these neighbors to vote, rather than randomly choosing one of them, the procedure
converges to the Bayes error rate. The high capacity of k-nearest neighbors allows it
to obtain high accuracy given a large training set. However, it does so at high
computational cost, and it may generalize very badly given a small, finite training set.
One weakness of k-nearest neighbors is that it cannot learn that one feature is more
discriminative than another.

The k-means clustering algorithm divides the training set into different clusters of
examples that are near each other. We can thus think of the algorithm as providing a k-
dimensional one-hot code vector h representing an input x. If x belongs to cluster i, then h
1= 1 and all other entries of the representation h are zero. The k-means algorithm works
by initializing k different centroids {pu(1), . .., w(k)} to different values, then alternating
between two different steps until convergence. In one step, each training example is
assigned to clusteri, where i is the index of the nearest centroid p(i) . In the other step,
each centroid (i) is updated tothe mean of all training examples x(j) assigned to cluster i.

Module -2
3 a. Explain about gradient based learning. (10 Marks)

For feedforward neural networks, it is important to initialize all weights to small random values.
The biases may be initialized to zero or to small positive values. The iterative gradient-based
optimization algorithms used to train feedforward networks and almost all other deep models.

We can of course, train models such as linear regression and support vector machines with
gradient descent too, and in fact this is common when the training set is extremely large. From
this point of view, training a neural network is not much different from training any other model.
Computing the gradient is slightly more complicated for a neural network, but can still be done
efficiently and exactly.

The cost functions for neural networks are more or less the same as those for other parametric
models, such as linear models. In most cases, our parametric model defines a distribution p(y |
x;0) and we simply use the principle of maximum likelihood. This means we use the cross-
entropy between the training data and the model’s predictions as the cost function. Sometimes,
we take a simpler approach, where rather than predicting a complete probability distribution over
y, we merely predict some statistics of y conditioned on x. Specialized loss functions allow us to
train a predictor of these estimates. The total cost function used to train a neural network will
often combine one of the primary cost functions described here with a regularization term. The
weight decay approach used for linear models is also directly applicable to deep neural networks
and is among the most popular regularization strategies.

b. Explain the concept of Back propagation and how it helps in a Neural network. (10
Marks)

The back-propagation algorithm , often simply called backprop, allows the information from the
cost to then flow backwards through the network, in order to compute the gradient. The term
back-propagation is often misunderstood as meaning the whole learning algorithm for multi-
layer neural networks. Actually, back-propagation refers only to the method for computing the
gradient, while another algorithm, such as stochastic gradient descent, is used to perform
learning using this gradient. Furthermore, back-propagation is often misunderstood as being
specific to multi-layer neural networks, but in principle it can compute derivatives of any
function(for some functions, the correct response is to report that the derivative of the function is
undefined). Specifically, we will describe how to compute the gradient Vxf(x, y) for an arbitrary
function f , wherex is a set of variables whose derivatives are desired, and y is an additional set
of variables that are inputs to the function but whose derivatives are not required. In learning
algorithms, the gradient we most often require is the gradient of the cost function with respect to
the parameters, VO J(0). Many machine learning tasks involve computing other derivatives,
either

as part of the learning process, or to analyze the learned model.

The back-propagation algorithm can be applied to these tasks as well, and is not restricted to
computing the gradient of the cost function with respect to the parameters. The idea of
computing derivatives by propagating information through a network is very general, and can be
used to compute values such as the Jacobian of a function f with multiple outputs. We restrict our
description here to the most commonly used case where f has a single output.

Steps :

1.Calculate Error: Compute the loss (error) between predicted and actual values.
2.Compute Gradients: Using the chain rule of calculus, calculate the derivative of the loss
function with respect to each weight.
3.Update Weights: Adjust weights and biases using Gradient Descent:
w=w—a- 0J /Ow
Where
w = Weight
o = Learning rate
0J /ow - Gradient of the loss function with respect to the weight

4.Repeat the process iteratively until the error is minimized.

4 a. Define Regularization. Describe Land L2 regularization. (10 Marks)

Regularization is a technique used in machine learning to prevent overfitting by adding a penalty
term to the loss function. This encourages the model to maintain simplicity, improving
generalization on unseen data.

Regularization helps by:

Reducing model complexity.

Improving model performance on unseen data.

Preventing overfitting by discouraging large coefficients.

B

L1 Regularization (Lasso Regression): as the sum of absolute values of the individual
parameters.

Cost Function: J(0)=Loss Function+\}_|0j|

In comparison to L2 regularization, L1 regularization results in a solution that is more sparse.
The sparsity property induced by L1 regularization has been used extensively as a feature
selection mechanism. Feature selection simplifies a machine learning problem by choosing
which subset of the available features should be used. The L1 penalty causes a subset of the
weights to become zero, suggesting that the corresponding features may safely be discarded.

L2 Parameter Regularization

L2 regularization is also known as ridge regression or Tikhonov regularization.

L2 Regularization, also known as Ridge Regularization in the context of linear regression, is a
regularization technique used to prevent overfitting by adding a penalty term to the cost function.
This penalty discourages large weights, leading to a simpler and more generalized model.

WP __’_
g - et N
T T~ . \‘
ra = ™ N
—L Sy
N, ~ +— / ! !
. ~4+L - o/
~ - e
(TI01

figure 7.1: An illustration of the effect of L2 (or weight decay) regularization on the value
of the optimal ww. The solid ellipses represent contours of equal value of the unregularized
ibjective. The dotted circles represent contours of equal value of the L2 regularizer. At
he point @2, these competing objectives reach an equilibrinm. In the first dimension, the
dgenvalue of the Hessian of J is small. The objective function does not increase much
rhen moving horizontally away from w*. Because the objective function does not express
L strong preference along this direction, the regularizer has a strong effect on this axis.
"he regularizer pulls w close to zero. In the second dimension. the objective function
s very sensitive to movements away from w”. The corresponding eigenvalue is large,
ndicating high curvature. As a result, weight decay affects the position ofws relativelyw
ittle.

During Gradient Descent, L2 Regularization modifies the weight update rule:
0)=0j—a(2J/00) +\/m6j)

Mm0j= Regularization term
o = Learning rate

I I I
13 Ar
XOR function, (10 Marks)

|
b. Given W and b = 0 draw feed forward network and evaluate

—]" _‘—2

The visualization of the feedforward neural network using the given weights.
The predicted outputs for the XOR function are:
« (OXORO0)=0
« (0XOR1)
« (1 XORO0)
e (1XOR1)

0
0
0

Input Layer Hidden Layer Output Layer

Feedforward Neural Network Evaluating XOR Function

These results indicate that the network isn’t correctly solving the XOR function. This setup
might be unsuitable due to the choice of weights or activation function. XOR is a nonlinear
problem, requiring a hidden layer with nonlinear activation functions.

Module-3
5 a. What are the challenges in neural network optimization? (10 Marks)

Il-Conditioning

The ill-conditioning problem is generally believed to be present in neuralnetwork training
problems. Ill-conditioning can manifest by causing SGD to get “stuck” in the sense that even
very small steps increase the cost function.

1, +

:—Zr’g' Hg—¢cg'g
to the cost. Ill-conditioning of the gradient becomes a problem when —.E(.QQTH g
exceeds ¢g' g. To determine whether ill-conditioning is detrimental to a neural
network training task, one can monitor the squared gradient norm g'g and
the g' Hg term. In many cases, the gradient norm does not shrink significantly
throughout learning, but the g ' Hg term grows by more than an order of magnitude.
T'he result is that learning becomes very slow despite the presence of a strong
gradient because the learning rate must be shrunk to compensate for even stronger

Local Minima
In the context of neural networks, the local minima problem occurs when the optimization
algorithm (usually gradient descent) finds a point where the error is low, but not the lowest
possible. This point is called a "local minimum," as opposed to the "global minimum," where the
error is the lowest across the entire function.
To Avoid Local Minima:
1. Use activation functions like ReLU or Sigmoid instead of step functions.
2. Apply a multilayer neural network (at least one hidden layer) for non-linear problems.
3. Use optimization techniques like momentum, Adam optimizer, or stochastic gradient
descent (SGD).
4. Randomly initialize weights multiple times (weight initialization strategies).

Plateaus, Saddle Points and Other Flat Regions

A plateau is a region in the loss function landscape where the gradient is nearly zero or very
small over a large area. When optimization algorithms (e.g., gradient descent) encounter a
plateau, updates become tiny or nonexistent.The network can get "stuck" in these regions for a
long time, leading to slow or stalled training.

A saddle point is a point in the loss landscape where the gradient is zero, but the point is neither
a minimum nor a maximum. In a saddle point, the loss function decreases in some directions but
increases in others. High-dimensional functions often have numerous saddle points, especially in
deep networks.

Flat regions refer to areas where the gradient is consistently close to zero, causing extremely
slow convergence. These regions are common when using activation functions that saturate, such
as Sigmoid or Tanh.

The network struggles to learn since gradient updates become negligible and Training time
increases significantly.

Exploding Gradients

Neural networks with many layers often have extremely steep regions resembling cliffs. These
result from the multiplication of several large weights together. On the face of an extremely steep
cliff structure, the gradient update step can move the parameters extremely far, usually jumping
off the cliff structure altogether. The cliff can be dangerous whether we approach it from above
or from below, but fortunately its most serious consequences can be avoided using the gradient
clipping The basic idea is to recall that the gradient does not specify the optimal step size, but
only the optimal direction within an infinitesimal region.

w

Long-Term Dependencies

Jw, b

For example, suppose that a computational graph contains a path that consists
of repeatedly multiplving by a matrix W. After {steps, this is equivalent to mul-
tiplying by W*. Suppose that W has an eigendecomposition W = Vdiag(A\)V L
In this simple case, it is straightforward to see that

Wt = (Vdiag(A)V 1) ‘ — Vdiag(A)tV L (8.11)

Any eigenvalues A; that are not near an absolute value of 1 will either explode if they
are greater than 1 in magnitude or vanish if they are less than 1 in magnitude. The
vanishing and exploding gradient problem refers to the fact that gradients
through such a graph are also scaled according to diag(A). Vanishing gradients
make it difficult to know which direction the parameters should move to improve
the cost function, while exploding gradients can make learning unstable. The cliff
structures described earlier that motivate gradient clipping are an example of the
exploding gradient phenomenon.

The repeated multiplication by W at each time step described here is very
similar to the power method algorithm used to find the largest eigenvalue of
a matrix W and the corresponding eigenvector. From this point of view it is
not surprising that &' W' will eventually discard all components of & that are

orthogonal to the principal eigenvector of W.

Recurrent networks
networks do not. so e
vanishing and exploding’

Inexact Gradients

The inexact gradients problem arises when the gradients calculated during the optimization
process are not accurate, leading to unreliable updates to the network’s parameters. This can
cause slow convergence, divergence, or getting stuck in local minima. Due to Non-Smooth or
Discontinuous Functions , Numerical Precision Errors , Approximations in Optimization
Algorithms , Vanishing or Exploding Gradients , Poor Weight Initialization.

Theoretical Limits of Optimization

Some theoretical results apply only to the case where the units of a neural network output
discrete values. However, most neural network units output smoothly increasing values that
make optimization via local search feasible. Some theoretical results show that there exist
problem classes that are intractable, but it can be difficult to tell whether a particular problem
falls into that class. Other results show that finding a solution for a network of a given size is
intractable, but in practice we can find a solution easily by using a larger network for which
many more parameter settings correspond to an acceptable solution. Moreover, in the context of
neural network training, we usually do not care about finding the exact minimum of a function,
but seek only to reduce its value sufficiently to obtain good generalization error. Theoretical
analysis of whether an optimization algorithm can accomplish this goal is extremely difficult.
Developing more realistic bounds on the performance of optimization algorithms therefore
remains an important goal for machine learning research.

e step, but feedforward
can largely avoid the

b. Explain the following algorithms i) RMSProp ii) RMSProp with momentum.(10 Marks)
1) RMSProp : RMSProp is an optimization algorithm that adjusts the learning rate for each
parameter based on the magnitude of recent gradients. It keeps a moving average of the squared

gradients to normalize the gradient descent step, preventing oscillations and speeding up
convergence.

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ¢, decay rate p.

Require: Initial parameter 8

Require: Small constant 4 usually 107%, used to stabilize division by small
numbers.
Initialize accumulation variables r = ()
while stopping criterion not met do

Sample a minibatch of m examples from the training set {z'", ..., z'"™} with
corresponding targets y'").
Compute gradient: g + ﬁva Y L(f(2D; 8), yD)
Accumulate squared gradient: r +— pr + (1 —p)Jg o g
Compute parameter update: Af = —W‘I_H ®g. | Vﬁ% applied element-wise)
Apply update: 8 «— 0 + A@

end while

ii) RMSProp with momentum

RMSProp with momentum incorporates the concept of momentum into the RMSProp algorithm.

It leverages both the running average of squared gradients (RMSProp) and the running average
of past updates (momentum) to smooth out the optimization process.

Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate €, decay rate p, momentum coefficient .
Require: Initial parameter €. initial velocity wv.
Initialize accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set =1 ="} with
corresponding targets ym'. 3
Compute interim update: 8 +— 8 + awv ~ .
Compute gradient: g < ,—‘nvg > L(_f(:rm:ﬂ). yt-i))
Accumulate gradient: + «+— pr + (1 — plg @ g
Compute velocity update: v +— av — 7‘; ©g.
Apply update: 8@ «+— 8 + v
end while

{:% applied element-wise)

6a. Explain stochastic gradient descent and momentum algorithms (10 Marks)
Stochastic Gradient Descent :

It is possible to obtain an unbiased estimate of the gradient by taking the average gradient on a
minibatch of m. A crucial parameter for the SGD algorithm is the learning rate. Previously, we
have described SGD as using a fixed learning rate In practice, it is necessary to gradually
decrease the learning rate over time. The learning rate may be chosen by trial and error, but it is
usually best to choose it by monitoring learning curves that plot the objective function as a
function of time.

The most important property of SGD and related minibatch or online gradient-based
optimization is that computation time per update does not grow with the number of training
examples. This allows convergence even when the number of training examples becomes very
large. For a large enough dataset, SGD may converge to within some fixed tolerance of its final
test set error before it has processed the entire training set.

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ¢.
Require: Initial parameter
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z',. .., z ™) with
corresponding targets y':-'ﬂl“.
Compute gradient estimate: g + -|—I—L VoY, L(f(z'":8), yl)
Apply update: 8 « 8 —¢g
end while

Formally, the momentum algorithm introduces a variable v that plays the role of velocity—it is
the direction and speed at which the parameters move through parameter space. The velocity is
set to an exponentially decaying average of the negative gradient.

Previously, the size of the step was simply the norm of the gradient multiplied by the learning
rate. Now, the size of the step depends on how large and how aligned a sequence of gradients
are. The step size is largest when many successive gradients point in exactly the same direction.
If the momentum algorithm always observes gradient g, then it will accelerate in the direction of
—g, until reaching a terminal velocity where the size of each step is

el|gl|

[— o

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate €, momentum parameter c.
Require: Initial parameter @, initial velocity w.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {=(1), .., x(™)}} with
corresponding targets g'*).

Compute gradient estimate: g < -LVg > . L(f(x'"); 8), (*))

e
Compute velocity update: © <+ av — €g

Apply update: 8 «— 8 + v
end while

b. Give the list of adaptive learning rates algorithms. Write the Ada Grad algorithm. (10
Marks)

Adaptive learning rate algorithms are a class of optimization methods that adjust the learning rate
dynamically during training to improve convergence, stability, and performance

Adagrad, Adadelta , RMSProp , Adam , AdamW (Adam with Weight Decay)

Ada Grad algorithm

The Adagrad algorithm, individually adapts the learning rates of all model parameters by scaling
them inversely proportional to the square root of the sum of all of their historical squared values

The parameters with the largest partial derivative of the loss have a correspondingly rapid
decrease in their learning rate, while parameters with small partial derivatives have a relatively
small decrease in their learning rate. The net effect is greater progress in the more gently sloped
directions of parameter space.

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ¢

Require: Initial parameter 6

Require: Small constant &, perhaps 1077, for numerical stability

Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z'V, ... 2™} with
corresponding targets y'), _
Compute gradient: g ,—1“\79 ¥ L{‘f{a:[i): H),y‘-ij}
Accumulate squared gradient: r <~ r+g®© g

Compute update: Af —m‘: = (0 g. (Division and square root applied
oy

element-wise)
Apply update: @ «— 0 + A@
end while

7 a. Explain the following with suitable diagram. i) Sparse interactions ii) Parameter
sharing (10 Marks)

Sparse interactions : Sparse Interactions operation enables the extraction of hierarchical
features from input data. Sparse Interactions: Sparse interactions within convolution optimize
computation by focusing on essential connections, reducing computational

Sparse Interaction is a concept in deep learning and neural networks where only a subset of
neurons or parameters interact at any given time, rather than all neurons being fully connected.
This approach reduces computational complexity, memory usage, and improves efficiency,
especially in large-scale mode

Sparse connectivity, viewed from below: We highlight one input unit, x3, and also highlight the
output units in s that are affected by this unit. (Top)When s is formed by convolution with a
kernel of width 3, only three outputs are affected by x. (Bottom)When s is formed by matrix
multiplication, connectivity is no longer sparse, so all of the outputs are affected by x3.

Parameter sharing refers to using the same parameter for more than one function in a model. In
a traditional neural net, each element of the weight matrix is used exactly once when computing
the output of a layer. It is multiplied by one element of the input and then never revisited. As a
synonym for parameter sharing, one can say that a network has tied weights, because the value of
the weight applied to one input is tied to the value of a weight applied elsewhere.

L]

050050

»
b

0,0R050

]
1~

0,,0N050

w
-

04,0050

]
&n

OXO0N020

Parameter sharing: Black arrows indicate the connections that use a particular parameter in two
different models. (Top)The black arrows indicate uses of the central element of a 3-element
kernel in a convolutional model. Due to parameter sharing, this single parameter is used at all
input locations. (Bottom)The single black arrow indicates the use of the central element of the
weight matrix in a fully connected model. This model has no parameter sharing so the parameter
is used only once.

b. Explain briefly variant of the CNN models. (10 Marks)
LeNet-5:
Architecture:
e 2 convolutional layers + subsampling (pooling) layers
e Fully connected layers + SoftMax for classification
Purpose: Handwritten digit recognition (MNIST dataset)
C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 v i i P@ 6@

32x32
E@14x14

|
Full wnr‘nectmn | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

AlexNet :

Architecture:

5 convolutional layers + pooling layers
ReLU activation, dropout for regularization

Overlapping pooling and large kernels
Purpose: Image classification

VGGNet:

Architecture:
e Deep network (16 to 19 layers)

Stacks of 3x3 convolutions with small receptive fields
e Fully connected layers at the end

Purpose: Image classification, feature extraction

B

QUTRUT

-
=
WiEE - e
— ey — g — e ey — s — R ey
o = wha |) E A E === LE o oo | =]
—-—EEE =lzl= zlzlz=lst 1=liz=l==El 1212121 SlE|=
= =] W = == =
sls SlE B E R E R E EE E R EEE SE|=E
—
=
(=N
=
ResNet :
Architecture:

Residual connections (skip connections)

Identity mapping to preserve information

50, 101, 152-layer versions (very deep networks)
Purpose: Solve vanishing gradient problem in deep networks

ResMNaet50 Moaodel Archilecture

=
Iryout - = = 1 = o= | == | - = Crutput
= 5=
2B E Elz| (E|E| (|8 2|8 R —
= = = o =1 oo = =
e |2 8 E|= |El=| |(BE|l=| &= = =
~d
N 1 L LR J L 4
¥) — T T 1
Slage 1 Srage 2 SErmcye E Enage 4 Sange S

8 a. Differentiate locally connected layers, tiled convolution and standard convolution with
suitable example and diagram.(10 Marks)

A locally connected layer is similar to a convolutional layer but without weight sharing. Each
filter has unique weights for each location, making it more specialized to local features.

Tiled convolution is a hybrid approach between standard convolution and locally connected
layers. It partially shares weights across spatial dimensions, creating periodic patterns.

A standard convolutional layer in CNNs applies the same filter (kernel) across the entire input
image. This ensures translation invariance, meaning the same features can be detected anywhere

in the image.

A comparison of locally connected layers, tiled convolution, and standard convolution. All three
have the same sets of connections between units, when the same size of kernel is used. This
diagram illustrates the use of a kernel that is two pixels wide. The differences between the
methods lies in how they share parameters. (Top)A locally connected layer has no sharing at all.
We indicate that each connection has its own weight by labeling each connection with a unique
letter. (Center)Tiled convolution has a set of t different kernels. Here we illustrate the case oft =
2. One of these kernels has edges labeled “a” and “b,” while the other has edges labeled “c” and
“d.” Each time we move one pixel to the right in the output, we move on to using a different
kernel. This means that, like the locally connected layer, neighboring units in the output have
different parameters. Unlike the locally connected layer, after we have gone through all available
kernels, we cycle back to the first kernel. If two output units are separated by multiple t steps,
then they share parameters. (Bottom)Traditional convolution is equivalent to tiled convolution
with t = 1. There is only one kernel, and it is applied everywhere, as indicated in the diagram by
using the kernel with weights labeled “a” and “b” everywhere.

b) . Explain the different layers in CNN models and its function with a neat diagram. (10
Marks)

Complex layer terminology Simple layer terminology

Next layer Next layer

i

Convolutional Layer

Pooling stage Pooling layer

}

Detector layer: Nonlinearity

Detector stage:

Nonlinearity g _
i : e.g., rectified linear
ey, rectified linear

4 4

Convolution stage: Convolution layer:

Affine transform Affine transform

: f

Input to laver Input to layers

The convolution layer is the core building block of CNNs. It detects patterns, edges, and features
from input images by applying filters (kernels). Extracts local features from input data. Preserves
spatial relationships by learning image features. Reduces dimensionality without losing
important information.

pooling layer reduces the spatial dimensions of the input, retaining the most significant features.
It’s often used after convolution layers to down sample the feature maps. Reduces the size of
feature maps (dimensionality reduction). Minimizes computational load and memory usage.
Helps in making the network invariant to small translations.

The detector layer applies a non-linear activation function to the output of convolutional layers.
This introduces non-linearity to the network, enabling it to learn complex patterns. Activates
neurons based on input strength. Introduces non-linearity to the network. Helps model complex
relationships in data.

Module-5
9 a. Discuss about Bidirectional Recurrent neural networks. (10 Marks)
The recurrent networks we have considered up to now have a “causal” structure, meaning that
the state at time t only captures information from the past(1), . . ., x(t—1), and the present input
x(t).
For example, in speech recognition, the correct interpretation of the current sound as a phoneme
may depend on the next few phonemes because of co-articulation and potentially may even
depend on the next few words because of the linguistic dependencies between nearby words: if
there are two interpretations of the current word that are both acoustically plausible, we
may have to look far into the future (and the past) to disambiguate them. typical bidirectional
RNN, with h(t) standing for the state of the sub-RNN that moves forward through time and g(t)
standing for the state of the sub-RNN that moves backward through time. This allows the output
units o(t) to compute a representation that depends on both the past and the future but is most
sensitive to the input values around time t, without having to specify a fixed-size window around
t

Computation of a typical bidirectional recurrent neural network, meant to learn to map input
sequences X to target sequences y, with loss L(t) at each step t. The h recurrence propagates
information forward in time (towards the right) while the g recurrence propagates information
backward in time (towards the left). Thus at each point t, the output units o(t) can benefit from a
relevant summary of the past in its h(t) input and from a relevant summary of the future in its g(t)
Imput.

b. What is speech recognition? Explain the different types of speech recognition
systems.(10 Marks)

The task of speech recognition is to map an acoustic signal containing a spoken
natural language utterance into the corresponding sequence of words intended by
the speaker.

The GMM-HMM model family treats acoustic waveforms as being generated by the following
process: first an HMM generates a sequence of phonemes and discrete sub-phonemic states then
a GMM transforms each discrete symbol into a brief segment of audio waveform. Although
GMM-HMM systems dominated ASR until recently. Later, with much larger and deeper models
and much larger datasets, recognition accuracy was dramatically improved by using neural
networks to replace GMMs for the task of associating acoustic features to phonemes (or sub-
phonemic states). Starting in 2009, speech researchers applied a form of deep learning based on
unsupervised learning to speech recognition. This approach to deep learning was based on
training undirected probabilistic models called restricted Boltzmann machines (RBMs) to model
the input data.

These networks take spectral acoustic representations in a fixed-size input window (around a
center frame) and predict the conditional probabilities of HMM state for that center frame.

Training such deep networks helped to significantly improve the recognition rate on TIMIT),
bringing down the phoneme error rate from about 26% to 20.7%.

Different types of speech recognition systems: i) Based on Speaker Dependency: Speaker-
Dependent Systems , Speaker-Independent Systems ii) Based on Vocabulary Size: Small
Vocabulary Systems, Medium Vocabulary Systems , Large Vocabulary Systems iii) Based on
Utterance Type : Isolated Word Recognition , Connected Word Recognition iv) Based on
Environment and Application : Embedded Speech Recognition Systems , Cloud-Based Speech
Recognition Systems, Hybrid Speech Recognition Systems v) Based on Acoustic Models and
Language Models: Acoustic Model , Language Model

10.a. Explain Long Short-Team Memory (LSTM) working principles along with all the
equations.(10 Marks)

Long Short-Term Memory, is a type of recurrent neural network (RNN) that uses gates to capture both
short-term and long-term memory. LSTMs are designed to process and retain information over multiple
time steps. They are widely used in deep learning and are ideal for sequence prediction tasks

output

self-loop

it i gate rget gate mtput gate

Block diagram of the LSTM recurrent network “cell.” Cells are connected recurrently to each
other, replacing the usual hidden units of ordinary recurrent networks. An input feature is
computed with a regular artificial neuron unit. Its value can be accumulated into the state if the
sigmoidal input gate allows it. The state unit has a linear self-loop whose weight is controlled by
the forget gate. The output of the cell can be shut off by the output gate. All the gating units have
a sigmoid nonlinearity, while the input unit can have any squashing nonlinearity. The state unit
can also be used as a extra input to the gating units. The black square indicates a delay of a single
time step.

Forget Gate Equation : ft=c(Wf:[ht—1,xt]+bf)

Input Gate Equation : it=c(Wi-[ht-1, xt]+bi)

Hidden State Equation : ht=otGtanh(Ct)

Cell State Equation : Ct=ftoCt—1+itoC’t

Updates the current cell state using the forget gate, input gate, and cell state candidate.

Output Gate Equation : ot=c(Wo-[ht—1,xt]+bo)

Wi: Weight matrix for input gate
bi: Bias term

ht—1: Previous hidden state

xt: Current input

Wit: Weight matrix for forget gate
o: Sigmoid activation function
Ct—1: Previous cell state

Wo: Weight matrix for output gate
bo: Bias term

b. What is Natural language processing? Explain different steps involved in NLP. (10
Marks)

Natural Language Processing (NLP) is a subfield of artificial intelligence (Al) that focuses on
enabling computers to understand, interpret, and generate human language. It bridges the gap
between human communication and computer understanding. NLP combines linguistics,
computer science, and machine learning to process and analyze large amounts of natural
language data.

steps in Natural Language Processing
1. Text Acquisition / Data Collection:

Gather raw textual data from various sources:
Websites, documents, social media, emails, transcripts, etc.

Determine the scope and domain of the data (e.g., news articles, product reviews)

2. Text Preprocessing (Data Cleaning):
This step prepares the raw text for analysis by standardizing and simplifying it.
1. Tokenization:
o Splitting text into smaller units called tokens (words, phrases, or symbols).
o Example:
Input: "Natural Language Processing is exciting."
Output: ["Natural", "Language", "Processing", "is", "exciting", "."
2. Normalization / Text Lowercasing:
o Converts all text to lowercase to avoid case sensitivity.
o Example: "Hello" — "hello"
3. Stopword Removal:
o Removes common words with little semantic value (e.g., "is", "and", "the").
o Example: "This is a good movie." — "good movie"
4. Punctuation Removal:
o Eliminates punctuation marks from text.
o Example: "Hello, world!" — "Hello world"
5. Stemming and Lemmatization:
o Reduces words to their root form.
o Stemming: Chops off word endings (e.g., "playing" — "play")
o Lemmatization: Maps words to dictionary form using grammar (e.g., "better" —
"good")
6. Handling Special Characters / Noise Removal:
o Removes unwanted symbols, numbers, and noise.
o Example: "I 10ve NLP!!!" — "I love NLP"
7. Spelling Correction:
o Corrects misspelled words using algorithms.
o Example: "teh" — "the"
8. Text Segmentation (Sentence Splitting):
o Splits text into sentences.
3. Text Representation (Feature Extraction):
Transform cleaned text into numerical data for machine learning models.
1. Bag of Words (BoW):
o Represents text as word frequency vectors.
o Ignores word order and context.
2. TF-IDF (Term Frequency-Inverse Document Frequency):
o Measures the importance of words relative to the document.
o High value for rare but important words.
3. Word Embeddings:

o Generates dense vector representations of words.
o Captures semantic meaning and relationships.
o Examples: Word2Vec, GloVe, FastText

4. Contextual Embeddings:
o Generates dynamic vectors based on context.
o Examples: BERT, GPT-3, RoBERTa

4. Model Building / Training:
Use machine learning or deep learning algorithms to train NLP models.

1. Select the Algorithm:
o Traditional ML: Naive Bayes, SVM, Decision Trees, KNN
o Deep Learning: RNN, LSTM, GRU, Transformer
o Pre-trained Models: BERT, GPT, RoBERTa, T5

2. Train the Model:
o Fit the model to the training data.
o Optimize parameters to minimize errors.

3. Validation and Hyperparameter Tuning:
o Evaluate model performance on validation data.
o Fine-tune hyperparameters.

5. Evaluation:
Assess the model’s performance using evaluation metrics:

1. Classification Tasks (e.g., Sentiment Analysis):
o Accuracy, Precision, Recall, F1-Score, ROC-AUC

2. Sequence Prediction / Translation:
o BLEU Score, Perplexity, Word Error Rate (WER)

3. Regression Tasks (e.g., Sentiment Scoring):
o Mean Absolute Error (MAE), Mean Squared Error (MSE)

4. Language Models / Text Generation:
o Perplexity, Human Evaluation

6. Post-Processing:
Refines output before presenting results.
1. Decoding and Formatting:
o Converts predictions into a readable format.
o For speech-to-text, use punctuation and capitalization.
2. Error Correction / Fine-Tuning:
o Corrects errors and refines predictions.
o Handle edge cases and context-specific corrections.
7. Deployment:
Make the NLP model available for real-world applications.
1. Deployment Platforms:

o Cloud services (AWS, Azure, Google Cloud)
o APIs, Microservices, Edge Devices
2. Scalability and Monitoring:
o Track performance and handle varying loads.
o Monitor for concept drift (changing patterns over time).
8. Maintenance and Optimization:
Continuously improve model performance.
1. Model Updates:
o Retrain on fresh data to maintain accuracy.
2. Performance Monitoring:
o Regularly assess model performance.
3. Handling Concept Drift:
o Adapt to changing data patterns.

