

Third Semester B.E. Degree Examination
Operating Systems (BCS303)

TIME: 03 Hours Max. Marks: 100
Note:

01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

MODULE-1

1a .Define operating Systems. Explain the dual-mode operating system with a neat
diagram. 6 Marks

Answer:
A program that acts as an intermediary between a user of a computer and the computer
hardware. An operating System is a collection of system programs that together control
the operations of a computer systems.

Some examples of operating systems are UNIX, Mach, MS-DOS, MS-Windows,
Windows/NT, Chicago, OS/2, MacOS, VMS, MVS, and VM.

I The Dual-Mode taken by most computer systems is to provide hardware support

that allows us to differentiate among various modes of execution.
At the very least, we need two separate modes of operation: user mode and kernel

mode (also called supervisor mode, system mode, or privileged mode).

A bit, called the mode bit is added to the hardware of the computer to indicate the
current mode: kernel (0) or user (1). With the mode bit, we are able to distinguish
between a task that is executed on behalf of the operating system and one that is
executed on behalf of the user.

When the computer system is executing on behalf of a user application, the system
is in user mode. However, when a user application requests a service from the operating
system (via a system call), it must transition from user to kernel mode to fulfill the
request.

This is shown in Figure below. As we shall see, this architectural enhancement is
useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating system is
then loaded and starts user applications in user mode. Whenever a trap or interrupt
occurs, the hardware switches from user mode to kernel mode (that is, changes the state
of the mode bit to 0). Thus, whenever the operating system gains control of the computer,
it is in kernel mode. The system always switches to user mode (by setting the mode bit to
1) before passing control to a user program.
The dual mode of operation provides us with the means for protecting the operating
system from errant users-and errant users from one another.

Figure: Transition from user to kernel mode.

1. (b). Distinguish between the following terms.
(i) Multiprogramming and Multitasking
(ii) Multiprocessor System and Clustered System. 6M

Answer:
i. Multitasking System and Multiprogramming: Time sharing (or multitasking) is a
logical extension of multiprogramming. In time-sharing systems, the CPU executes
multiple jobs by switching among them, but the switches occur so frequently that the
users can interact with each program while it is running. A time-shared operating system
uses CPU scheduling and multiprogramming to provide each user with a small portion of
a time-shared computer. Each user has at least one separate program in memory. A
program loaded into memory and executing is called a process.
Time-sharing and multiprogramming require several jobs to be kept simultaneously in
memory. Since in general main memory is too small to accommodate all jobs, the jobs
are kept initially on the disk in the job pool.
ii. Multiprocessor systems and clustered systems: Multiprocessor systems (also
known as parallel systems or tightly coupled systems) are growing in importance. Such
systems have two or more processors in close communication, sharing the computer bus
and sometimes the clock, memory, and peripheral devices.
Clustered systems differ from multiprocessor systems, however, in that they are
composed of two or more individual systems coupled together. Clustering is usually used
to provide high-availability service; that is, service will continue even if one or more
systems in the cluster fail. High availability is generally obtained by adding a level of
redundancy in the system.

c). Explain with a neat diagram VM-Ware Architecture 8 Marks
Answer:

A virtual machine takes the layered approach to its logical conclusion. It treats
hardware and theoperating system kernel as though they were all hardware.
A virtual machine provides an interface identical to the underlying bare hardware.
The operating system creates the illusion of multiple processes, each executing on
its own processor with its own (virtual) memory.
The resources of the physical computer are shared to create the virtual machines.
✦ CPU scheduling can create the appearance that users have their own processor.

✦ Spooling and a file system can provide virtual card readers and virtual line

printers.
✦ A normal user time-sharing terminal serves as the virtual machine operator’s
console.

System Models

Non-virtual Machine Virtual Machine

Advantages/Disadvantages of Virtual Machines
The virtual-machine concept provides complete protection of system resources since
each virtual
Machine is isolated from all other virtual machines. This isolation, however, permits
no direct sharing of resources.
A virtual-machine system is a perfect vehicle for operating-systems research and
development. System development is done on the virtual machine, instead of on a

physical machine and so does not disrupt normal system operation.
The virtual machine concept is difficult to implement due to the effort required to
provide an exact duplicate to the underlying machine.

OR
2a. List& Explain the services of the operating system that are helpful for the user and
the system. 6 Marks

Answer:
Operating systems can be explored from two viewpoints: the user and the system.
User View: The user's view of the computer varies according to the interface being used.

Most computer users sit in front of a PC, consisting of a monitor, keyboard, mouse, and
system unit. Such a system is designed for one user to monopolize its resources. The
goal is to maximize the work (or play) that the user is performing. In this case,
the operating system is designed mostly for ease of use, with some attention paid to
performance and none paid to resource utilization-how various hardware and
software resources are shared. Performance is, of course, important to the user; but
rather than resource utilization, such systems are optimized for the single-user
experience.
System View: From the computer's point of view, the operation system is the program
most intimately involved with the hardware. In this context, we can view an operating
system as a resource allocator. A computer system has many resources that may be
required to solve a problem: CPU time, memory space, file-storage space, I/O devices,
and so on. The operating system acts as the manager of these resources.
A control program manages the execution of user programs to prevent errors and
improper use of the computer. It is especially concerned with the operation and control of
I/O devices.
Following are the six services provided by operating systems to the convenience of the
users.

1. User interface: Almost all operating systems have a user interface (UI). This
interface can take several forms. One is a command-line interface (CLI) and other is a
graphical user interface (GUI) is used.
2. Program Execution: The purpose of computer systems is to allow the user to

execute programs. So the operating system provides an environment where the
user can conveniently run programs.

3. I/O Operations: Each program requires an input and produces output. This involves
the use of I/O. So the operating systems are providing I/O makes it convenient for
the users to run programs.

4. File System Manipulation: The output of a program may need to be written into
new files or input taken from some files. The operating system provides this service.
Finally, some programs include permissions management to allow or deny access to files
or directories based on file ownership.
5. Communications: The processes need to communicate with each other to
exchange information during execution. It may be between processes running on the
same computer or running on the different computers. Communications can be
occur in two ways: (i) shared memory or (ii) message passing

6. Error Detection: An error is one part of the system may cause malfunctioning of
the complete system. To avoid such a situation operating system constantly monitors
the system for detecting the errors. This relieves the user of the worry of errors
propagating to various part of the system and causing malfunctioning.

Following are the three services provided by operating systems for ensuring the

efficient operation of the system itself.
1. Resource allocation
2. Accounting

Protection

2b. Explain the different computing environment.
Computing Environments
The different computing environments are -
Traditional Computing

 The current trend is toward providing more ways to access these computing
environments.
Web technologies are stretching the boundaries of traditional computing. Companies
establish
portals, which provide web accessibility to their internal servers. Network computers
are
essentially terminals that understand web-based computing. Handheld computers can
synchronize with PCs to allow very portable use of company information. Handheld
PDAs can
also connect to wireless networks to use the company's web portal. The fast data
connections
are allowing home computers to serve up web pages and to use networks. Some homes
even
have firewalls to protect their networks.

 In the latter half of the previous century, computing resources were scarce. Years
before,
systems were either batch or interactive. Batch system processed jobs in bulk, with
predetermined input (from files or other sources of data). Interactive systems waited
for input
from users. To optimize the use of the computing resources, multiple users shared time
on
these systems. Time-sharing systems used a timer and scheduling algorithms to rapidly
cycle
processes through the CPU, giving each user a share of the resources.

 Today, traditional time-sharing systems are used everywhere. The same scheduling
technique
is still in use on workstations and servers, but frequently the processes are all owned by
the
same user (or a single user and the operating system). User processes, and system
processes
that provide services to the user, are managed so that each frequently gets a slice of
computer
time.

Client-Server Computing
Designers shifted away from centralized system architecture to - terminals connected
to
centralized systems. As a result, many of today’s systems act as server systems to satisfy
requests
generated by client systems. This form of specialized distributed system, called client-
server system.

Operating Systems 18CS43

17 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru
General Structure of Client – Server System

Server systems can be broadly categorized as compute servers and file servers:

 The compute-server system provides an interface to which a client can send a request
to
perform an action (for example, read data); in response, the server executes the action
and
sends back results to the client. A server running a database that responds to client
requests
for data is an example of such a system.

 The file-server system provides a file-system interface where clients can create,
update,
read, and delete files. An example of such a system is a web server that delivers files to
clients running the web browsers.

Peer-to-Peer Computing

 In this model, clients and servers are not distinguished from one another; here, all
nodes within
the system are considered peers, and each may act as either a client or a server,
depending on
whether it is requesting or providing a service.

 In a client-server system, the server is a bottleneck, because all the services must be
served by
the server. But in a peer-to-peer system, services can be provided by several nodes
distributed
throughout the network.

 To participate in a peer-to-peer system, a node must first join the network of peers.
Once a
node has joined the network, it can begin providing services to—and requesting
services
from—other nodes in the network.
Determining what services are available is accomplished in one of two general ways:

 When a node joins a network, it registers its service with a centralized lookup service
on the
network. Any node desiring a specific service first contacts this centralized lookup
service
to determine which node provides the service. The remainder of the communication
takes
place between the client and the service provider.

 A peer acting as a client must know, which node provides a desired service by
broadcasting
a request for the service to all other nodes in the network. The node (or nodes)
providing
that service responds to the peer making the request. To support this approach, a
discovery
protocol must be provided that allows peers to discover services provided by other
peers in
the network.

Operating Systems 18CS43

18 Karthikeyan S M, Asst. Professor, Dept. of. CSE, SVIT, Bengaluru

Web-Based Computing
 Web computing has increased the importance on networking. Devices that were not

previously
networked now include wired or wireless access. Devices that were networked now
have faster
network connectivity.

 The implementation of web-based computing has given rise to new categories of
devices, such
as load balancers, which distribute network connections among a pool of similar
servers.
Operating systems like Windows 95, which acted as web clients, have evolved into
Linux and
Windows XP, which can act as web servers as well as clients. Generally, the Web has
increased the complexity of devices, because their users require them to be web-
enabled.

 The design of an operating system is a major task. It is important that the goals of the
new
system be well defined before the design of OS begins. These goals form the basis for
choices
among various algorithms and strategies.

2c. What are system calls? Explain its types 8Marks
Answer:

 System calls provide an interface between the process and the operating system.
 System calls allow user-level processes to request some services from the

operating system which process itself is not allowed to do.
 For example, for I/O a process involves a system call telling the operating

system to read or write particular area and this request is satisfied by the
operating system.

 System calls can be grouped roughly into five major categories: process control, file
manipulation, device manipulation, information maintenance, and
communications.

Process control: A running program needs to be able to halt its execution either
normally (end) or abnormally (abort). If a system call is made to terminate the currently
running program abnormally, or if the program runs into a problem and causes an error
trap, a dump of memory is sometimes taken and an error message generated.
File management: We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file's attributes. Once the file is
created, we need to open it and to use it. We may also read, write, or reposition
(rewinding or skipping to the end of the file, for example). Finally, we need to close the
file, indicating that we are no longer using it.
Device management: A process may need several resources to execute-main memory,
disk drives, access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will have to wait
until sufficient resources are available.
Information Maintenance: Many system calls exist simply for the purpose of
transferring information between the user program and the operating system. For
example, most systems have a system call to return the current time and date. Other
system calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory or disk
space, and so on.
Communication: There are two common models of interprocess communication: the

message passing model and the shared-memory model. In the message-passing model,
the communicating processes exchange messages with one another to transfer
information. Messages can be exchanged between the processes either directly or
indirectly through a common mailbox.

MODULE-2

3a. What is Process and explain the state diagram 10Marks Answer:

Process: Program under execution, which is in main memory
Process State

As a process executes, it changes state. The state of a process is defined in part by
the current activity of that process.

Figure: Diagram of process state.

Each process may be in one of the following states:

 New State: The process is being created.
 Running State: A process is said to be running if it has the CPU, that is, process

actually using the CPU at that particular instant.
 Blocked (or waiting) State: A process is said to be blocked if it is waiting for some

event to happen such that as an I/O completion before it can proceed. Note that a
process is unable to run until some external event happens.

 Ready State: A process is said to be ready if it needs a CPU to execute. A ready
state process is runnablebut temporarily stopped running to let another process run.

 Terminated state: The process has finished execution.

Process Control Block (PCB)
Each process is represented in the operating system by a process control block

(PCB)-also called a task control block. A PCB is shown in Figure below. It contains many
pieces of information associated with a specific process, including these:

Figure: Process control block (PCB).

 Process state

 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information

 Accounting information
 I/O status information

Process state: The state may be new, ready, running, waiting, halted, and SO on.
Program counter: The counter indicates the address of the next instruction to be
executed for this process.
CPU registers: The registers vary in number and type, depending on the computer
architecture. They include accumulators, index registers, stack pointers, and general-
purpose registers, plus any condition-code information.
CPU-scheduling information: This information includes a process priority, pointers to
scheduling queues, and any other scheduling parameters.
Memory-management information: This information may include such information as
the value of the base and limit registers, the page tables, or the segment tables,
depending on the memory system used by the operating system.
Accounting information: This information includes the amount of CPU and real time
used, time limits, account numbers, job or process numbers, and so on.
Status information: The information includes the list of I/O devices allocated to this
process, a list of open files, and so on.

3b What is inter-process communication? Discuss message passing and the shared
memory concept of IPC. 10
Marks

Answer:
Concurrent execution of cooperating processes requires mechanisms that allow

processes to communicate with one another and to synchronize their actions.
Cooperating processes require an interprocess communication (IPC) mechanism that will
allow them to exchange data and information.
There are two fundamental models of interprocess communication:

(1) shared memory and
(2) message passing.

In the shared-memory model, a region of memory that is shared by cooperating
processes is established. Processes can then exchange information by reading and
writing data to the shared region.
In the message-passing model, communication takes place by means of messages
exchanged between the cooperating processes. The two communications models are
contrasted in Figure below.

Figure: Communications models. (a) Message passing. (b) Shared memory.

Shared-Memory Systems
Interprocess communication using shared memory requires communicating

processes to establish a region of shared memory. Typically, a shared-memory region
resides in the address space of the process creating the shared-memory segment.

Other processes that wish to communicate using this shared-memory segment
must attach it to their address space.
Shared memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared areas.

Two types of buffers can be used. The unbounded buffer places no practical limit
on the size of the buffer. The consumer may have to wait for new items, but the producer
can always produce new items.

The bounded buffer assumes a fixed buffer size. In this case, the consumer must
wait if the buffer is empty, and the producer must wait if the buffer is full.
Message-Passing Systems

Message passing provides a mechanism to allow processes to communicate and to
synchronize their actions without sharing the same address space and is particularly
useful in a distributed environment, where the communicating processes may reside on
different computers connected by a network.

A message-passing facility provides at least two operations: send (message) and
receive (message). Messages sent by a process can be of either fixed or variable size. If

only fixed-sized messages can be sent, the system-level implementation is
straightforward. This restriction, however, makes the task of programming more difficult.

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between them.
Here are several methods for logically implementing a link and the send() / receive()
operations:
• Direct or indirect communication
• Synchronous or asynchronous communication
• Automatic or explicit buffering

OR
4. (a). explain detail the multithreading model 6 Marks

Answer:
Many-to-One Model

The many-to-one model (Figure below) maps many user-level threads to one kernel
thread. Thread management is done by the thread library in user space, so it is efficient;
but the entire process will block if a thread makes a blocking system call.

Also, because only one thread can access the kernel at a time, multiple threads
are unable to run in parallel on multiprocessors. Green threads-a thread library
available for Solaris-uses this model, as does GNU Portable Threads.

Figure: Many-to-one model.

One-to-One Model

The one-to-one model (Figure below) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another thread to
run when a thread makes a blocking system call; it also allows multiple threads to run in
parallel on multiprocessors. The only drawback to this model is that creating a user
thread requires creating the corresponding kernel thread.

Because the overhead of creating kernel threads can burden the performance of an
application, most implementations of this model restrict the number of threads
supported by the system. Linux, along with the family of Windows operating systems-
including Windows 95, 98, NT, 2000, and XP implement the one-to-one model.

Figure: One-to-one model.

Many-to-Many Model
The many-to-many model (Figure below) multiplexes many user-level threads to a

smaller or equal number of kernel threads. The number of kernel threads may be specific
to either a particular application or a particular machine (an application may be
allocated more kernel threads on a multiprocessor than on a uniprocessor).

Figure: Many-to-many model.

One popular variation on the many-to-many model still multiplexes many user-
level threads to a smaller or equal number of kernel threads but also allows a user-level
thread to be bound to a kernel thread. This variation, sometimes referred to as the two-
level model (Figure below), is supported by operating systems such as IRIX, HP-UX, and
Tru64 UNIX.

Figure: Two-level model.

(c). Calculate average waiting and a v e r a g e turnaround times by drawing
the Gantt chart using FCFS, SJF and RR (q=4ms) and priority scheduling(Higher
nUmber is highest priority) 8 Marks

Process B.T(ms) Priority
P1 24 1
P2 03 2
P3 03 3

1. First Come First Serve (FCFS)

Gantt Chart:

CopyEdit

| P1 | P2 | P3 |

0 24 27 30

Turnaround Time (TAT) = Completion Time - Arrival Time
Waiting Time (WT) = Turnaround Time - Burst Time

Process BT CT TAT = CT - AT WT = TAT - BT

P1 24 24 24 0

P2 3 27 27 24

P3 3 30 30 27

AWT = (0 + 24 + 27) / 3 = 17 ms
ATAT = (24 + 27 + 30) / 3 = 27 ms

2. Shortest Job First (SJF) - Non-Preemptive

Order of Execution: P2 → P3 → P1

Gantt Chart:

CopyEdit

| P2 | P3 | P1 |

0 3 6 30

Process BT CT TAT = CT - AT WT = TAT - BT

P2 3 3 3 0

P3 3 6 6 3

P1 24 30 30 6

AWT = (0 + 3 + 6) / 3 = 3 ms
ATAT = (3 + 6 + 30) / 3 = 13 ms

3. Round Robin (RR) - Quantum = 4 ms

Order of Execution: P1(4) → P2(3) → P3(3) → P1(4) → P1(4) → P1(4) → P1(4)

Gantt Chart:

CopyEdit

| P1 | P2 | P3 | P1 | P1 | P1 | P1 |

0 4 7 10 14 18 22 26 30

Process BT CT TAT = CT - AT WT = TAT - BT

P1 24 30 30 6

P2 3 7 7 4

P3 3 10 10 7

AWT = (6 + 4 + 7) / 3 = 5.67 ms
ATAT = (30 + 7 + 10) / 3 = 15.67 ms

4. Priority Scheduling (Higher Number = Higher Priority) - Non-Preemptive

Order of Execution: P3 → P2 → P1

Gantt Chart:

CopyEdit

| P3 | P2 | P1 |

0 3 6 30

Process BT Priority CT TAT = CT - AT WT = TAT - BT

P3 3 3 3 3 0

P2 3 2 6 6 3

P1 24 1 30 30 6

AWT = (0 + 3 + 6) / 3 = 3 ms
ATAT = (3 + 6 + 30) / 3 = 13 ms

Final Results Comparison

Algorithm AWT (ms) ATAT (ms)

FCFS 17 27

SJF 3 13

RR (q=4) 5.67 15.67

Priority 3 13

Conclusion:

 SJF and Priority Scheduling provide the best results with the lowest AWT (3 ms) and ATAT
(13 ms).

 FCFS has the worst AWT and ATAT due to long waiting times.

 Round Robin balances fairness but increases waiting time compared to SJF and Priority.

MODULE-3

5a. Critical Section and Peterson probel. 5 Marks
Answer:
A classic software-based solution to the critical-section problem known as Peterson's

solution.
Peterson's solution is restricted to two processes that alternate execution between

their critical sections and remainder sections. The processes are numbered P0 and Pl.
For convenience, when presenting Pi, we use Pj to denote the other process; that is,

j equals 1 - i. Peterson's solution requires two data items to be shared between the two
processes:

int turn;
boolean flag[2];

The variable turn indicates whose turn it is to enter its critical section. That is, if
turn == i, then process Pi is allowed to execute in its critical section. The flag array is
used to indicate if a process is ready to enter its critical section.

For example, if flag [i] is true, this value indicates that Pi is ready to enter its
critical section. With an explanation of these data structures complete, we are now ready
to describe the algorithm shown in Figure below.

Figure: The structure of process Pi in Peterson's solution.

To enter the critical section, process Pi first sets flag [i] to be true and then sets turn
to the value j, thereby asserting that if the other process wishes to enter the critical
section it can do so. If both processes try to enter at the same time, turn will be set to
both i and j at roughly the same time. Only one of these assignments will last; the other
will occur, but will be overwritten immediately.

To prove property Mutual exclusion is preserved, we note that each Pi enters its
critical section only if either flag [j] == false or turn == i.

Also note that, if both processes can be executing in their critical sections at the same
time, then flag [i] ==flag [j] == true. These two observations imply that P0 and P1 could not
have successfully executed their while statements at about the same time, since the
value of turn can be either 0 or 1, but cannot be both.

5 c. What is a semaphore? Classical Dining Philosopher problem gives a solution
using semaphore. 8 Marks

Answer:
A semaphore S is an integer variable that, apart from initialization, is accessed

only through two standard atomic operations: wait and signal. These operations were

originally termed P (for wait; from the Dutch proberen, to test) and V (for signal; from
verhogen, to increment). The classical definition of wait in pseudo code is

wait(S)
{

while (S <= 0)
; // no-op
S --;

}
The classical definitions of signal in pseudo code is

Signal(S)
{

S++;
}

The dining-philosophers problem is considered a classic synchronization problem neither
because of its practical importance nor because computer scientists dislike philosophers
but because it is an example of a large class of concurrency-control problems. It is a
simple representation of the need to allocate several resources among several processes
in a deadlock-free and starvation-free manner.

One simple solution is to represent each chopstick with a semaphore. A

philosopher tries to grab a chopstick by executing a wait () operation on that semaphore;
she releases her chopsticks by executing the signal () operation on the appropriate
semaphores.

Figure 1 The situation of the dining philosophers.

Thus, the shared data are

semaphore chopstick [5] ;
where all the elements of chopstick are initialized to 1. The structure of

philosopher i is shown in Figure 2.
Although this solution guarantees that no two neighbors are eating

simultaneously, it nevertheless must be rejected because it could create a deadlock.
Suppose that all five philosophers become hungry simultaneously and each grabs her left
chopstick. All the elements of chopstick will now be equal to O. When each philosopher
tries to grab her right chopstick, she will be delayed forever.

do {

Figure 2 The structure of philosopher i.

ning-philosophers problem that ensures fre

wait (chopstick[i]);

wait(chopstick[(i+1) % 5]);

.

// eat

.

signal (chopstick[i]);

signal (chopstick[(i+1) % 5]);

.

// think

.

A solution to the di }while (TRUE);edom from deadlocks.
 Allow at most four philosophers to be sitting simultaneously at the table.
 Allow a philosopher to pick up her chopsticks only if both chopsticks are available

(to do this she must pick them up in a critical section).
 Use an asymmetric solution; that is, an odd philosopher picks up first her left

chopstick and then her right chopstick, whereas an even philosopher picks up her
right chopstick and then her left chopstick.

Finally, any satisfactory solution to the dining-philosophers problem must guard against
the possibility that one of the philosophers will starve to death. A deadlock-free solution
does not necessarily eliminate the possibility of starvation.

OR

6.(a). Define deadlock. What are the necessary conditions for deadlock to occur?
5 Marks

Answer:
In a multiprogramming environment, several processes may compete for a finite number
of resources.
A process requests resources; and if the resources are not available at that time, the

process enters a waiting state.
Sometimes, a waiting process is never again able to change state, because the
resources it has requested are held by other waiting processes.

This situation is called a deadlock.

In a deadlock, processes never finish executing, and system resources are tied up,
preventing other jobs from starting.
Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously in

a system:
1. Mutual Exclusion Condition: The resources involved are non-shareable.
Explanation: At least one resource must be held in a non-shareable mode, that is, only
one process at a time claims exclusive control of the resource. If another process
requests that resource, the requesting process must be delayed until the resource has
been released.

2. Hold and Wait Condition: Requesting process hold already the resources while
waiting for requested resources.
Explanation: There must exist a process that is holding a resource already allocated to it
while waiting for additional resource that are currently being held by other processes.

3. No-Preemptive Condition: Resources already allocated to a process cannot be
preempted. Explanation: Resources cannot be removed from the processes are used to
completion or released voluntarily by the process holding it.

4. Circular Wait Condition: The processes in the system form a circular list or chain
where each process in the list is waiting for a resource held by the next process in the
list. There exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is
waiting for a resource that is held by Pn, and P0 is waiting for a resource that is held by
P0.

6 b. Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker's algorithm:
a. What is the content of the matrix Need?
b. Is the system in a safe state?
c. If a request from process PI arrives for (0, 4, 2, 0), can the request be

granted immediately?
9 Marks
Answer:
a. Since Need = Max − Allocation, the content of Need is

A B CD
0 0 0 0

0 7 5 0
1 0 0 2
0 0 2 0
0 6 4 2

b. Yes, the sequence <P0, P2, P1, P3, P4> satisfies the safety requirement.
c. Yes. Since

i. (0,4,2,0) _ Available = (1,5,2,0)
ii. (0,4,2,0) _ Maxi = (1,7,5,0)
iii. The new system state after the allocation is made is

Allocation Max Need Available
A B C D A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 0 0 0 0 1 1 0 0
P1 1 4 2 0 1 7 5 0 0 3 3 0

P2 1 3 5 4 2 3 5 6 1 0 0 2

P3 0 6 3 2 0 6 5 2 0 0 2 0

P4 0 0 1 4 0 6 5 6 0 6 4 2

and the sequence < P0, P2, P1, P3, P4 > satisfies the safety requirement.

MODULE-4

7. (a). What is TLB? Explain TLB in detail with a paging system with a neat
diagram. 6 Marks
Answer:

 The standard solution to this problem is to use a special, small, fast lookup
hardware cache, called a translation look-aside buffer (TLB).

 The TLB is associative, high-speed memory. Each entry in the TLB consists of two
parts: a key (or tag) and a value.

 When the associative memory is presented with an item, the item is compared with
all keys simultaneously.

 The TLB is used with page tables in the following way. The TLB contains only a few
of the page-table entries. When a logical address is generated by the CPU, its page
number is presented to the TLB.
 If the page number is found, its frame number is immediately available and is used
to access memory.
 The whole task may take less than 10 percent longer than it would if an unmapped
memory reference were used.

 If the page number is not in the TLB (known as a TLB miss), a memory reference to
the page table must be made. When the frame number is obtained, we can use it to
access memory (Figure below).

(b). With the help of a neat diagram, explain the various steps of address binding.
6 Marks

Answer:
Address binding of instructions and data to memory addresses can happen at

three different stages.
1. Compile time: The compile time is the time taken to compile the program or

source code. During compilation, if memory location known a priori, then it
generates absolute codes.

2. Load time: It is the time taken to link all related program file and load into the
main memory. It must generate relocatable code if memory location is not known
at compile time.

3. Execution time: It is the time taken to execute the program in main memory by
processor. Binding delayed until run time if the process can be moved during its
execution from one memory segment to another. Need hardware support for
address maps (e.g., base and limit registers).

(c). Consider the page reference string: 1,0,7,1,0,2,1,2,3,0,3,2,4,0,3,6,2,1 for a
memory with three frames. Determine the number of page faults using the FIFO,
Optimal, and LRU replacement algorithms. Which algorithm is most efficient?

8 Marks

Answer:

1. FIFO (First-In, First-Out)

FIFO replaces the oldest page in the frame.

Page Frame 1 Frame 2 Frame 3 Page Fault

7 7

Yes

0 7 0

Yes

1 7 0 1 Yes

2 2 0 1 Yes

0 2 0 1 No

3 2 3 1 Yes

0 2 3 0 Yes

4 4 3 0 Yes

2 4 2 0 Yes

3 4 2 3 Yes

0 0 2 3 Yes

3 0 2 3 No

2 0 2 3 No

1 1 2 3 Yes

2 1 2 3 No

0 1 0 3 Yes

1 1 0 3 No

7 7 0 3 Yes

0 7 0 3 No

1 7 1 3 Yes

Export to Sheets

Total Page Faults (FIFO): 15

2. Optimal Page Replacement

Optimal replacement replaces the page that will not be used for the longest time in the future.

Page Frame 1 Frame 2 Frame 3 Page Fault

7 7

Yes

0 7 0

Yes

1 7 0 1 Yes

2 2 0 1 Yes

0 2 0 1 No

3 2 3 1 Yes

0 2 3 0 Yes

4 4 3 0 Yes

2 4 2 0 Yes

3 4 2 3 Yes

0 0 2 3 Yes

3 0 2 3 No

2 0 2 3 No

1 1 2 3 Yes

2 1 2 3 No

0 1 0 3 Yes

1 1 0 3 No

7 7 0 3 Yes

0 7 0 3 No

1 7 1 3 Yes

Export to Sheets

Total Page Faults (Optimal): 12

3. LRU (Least Recently Used)

LRU replaces the page that has been used the least recently.

Page Frame 1 Frame 2 Frame 3 Page Fault

7 7

Yes

0 7 0

Yes

1 7 0 1 Yes

2 2 0 1 Yes

0 2 0 1 No

3 2 3 1 Yes

0 2 3 0 Yes

4 4 3 0 Yes

2 4 2 0 Yes

3 4 2 3 Yes

0 0 2 3 Yes

3 0 2 3 No

2 0 2 3 No

1 1 2 3 Yes

2 1 2 3 No

0 1 0 3 Yes

1 1 0 3 No

7 7 0 3 Yes

0 7 0 3 No

1 7 1 3 Yes

Export to Sheets

Total Page Faults (LRU): 12

Efficiency Comparison

The efficiency of a page replacement algorithm is determined by the number of page faults it
incurs – the lower the page faults, the more efficient the algorithm.

In this case:

 Optimal and LRU are more efficient than FIFO as they both result in fewer page faults (12)
compared to FIFO (15).

 Optimal and LRU have the same number of page faults for this particular reference string.

Important Note:

 The efficiency of page replacement algorithms can vary depending on the specific reference
string.

 The Optimal algorithm is theoretically the most efficient, but it's not practically
implementable because it requires future knowledge of the reference string. It serves as a
benchmark to compare other algorithms.

 LRU often performs very close to Optimal in practice and is a commonly used algorithm.

Sources and related content

OR

8. (a). What is Page Fault? Explain the steps in handling page faults using the
appropriate diagram.
Answer: 10
Marks
 Consider how an executable program might be loaded from disk into memory.
 Loading the entire program into memory results in loading the executable code

for all options, regardless of whether an option is ultimately selected by the user or
not.

 An alternative strategy is to initially load pages only as they are needed.
 This technique is known as demand paging and is commonly used in virtual

memory systems.

 With demand-paged virtual memory, pages are only loaded when they are
demanded during program execution; pages that are never accessed are thus
never loaded into physical memory.

 The paging hardware, in translating the address through the page table, will
notice that the invalid bit is set, causing a trap to the operating system.

 This trap is the result of the operating system's failure to bring the desired page
into memory.

 The procedure for handling this page fault is straightforward (Figure below):

https://github.com/aaru9dua/CPU-scheduling
https://github.com/aaru9dua/CPU-scheduling

1. We check an internal table for this process to determine whether the reference was
a valid or an invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid, but we have
not yet brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).
4. We schedule a disk operation to read the desired page into the newly allocated

frame.
5. When the disk read is complete, we modify the internal table kept with the

process and the page table to indicate that the page is now in memory.
6. We restart the instruction that was interrupted by the trap. The process can

now access the page as though it had always been in memory.

A page fault causes the following sequence to occur:
1. Trap to the operating system.
2. Save the user registers and process state.
3. Determine that the interrupt was a page fault.
4. Check that the page reference was legal and determine the location of the
page on the disk.
5. Issue a read from the disk to a free frame:
a. ·Wait in a queue for this device until the read request is serviced.
b. Wait for the device seek and / or latency time.

c. Begin the transfer of the page to a free frame.
6. While waiting, allocate the CPU to some other user (CPU scheduling, optional).

9 (b)Explain File Allocation methods 10

ALLOCATIONMETHODS
Allocation methods address the problem of allocating space to files so that disk space is
utilizedeffectivelyandfilescanbeaccessedquickly.
Three methodsexistforallocatingdiskspace

 Contiguousallocation
 Linkedallocation
 Indexedallocation

Contiguousallocation:
 Requiresthateachfile occupyasetofcontiguousblocks onthedisk
 Accessing a file is easy – only need the starting location (block #) and length (number

ofblocks)
 Contiguous allocation of a file is defined by the disk address and length (in block units)

ofthe first block. If the file is n blocks long and starts at location b, then it occupies blocks
b,b + 1, b + 2, ... ,b + n - 1. The directory entry for each file indicates the address of
thestartingblockandthelengthofthearea allocatedforthisfile.

 Accessingafilethathasbeenallocatedcontiguouslyiseasy.Forsequentialaccess,thefile
system
remembers the disk address of the last block referenced and when necessary,reads the
next block. For direct access to block i of a file that starts at block b, we canimmediately
access block b + i. Thus, both sequential and direct access can be
supportedbycontiguousallocation.

Disadvantages:

1. Finding space for a new file is difficult. The system chosen to manage free
spacedetermines how this task is accomplished. Any management system can be used,
butsomeareslowerthanothers.
2. Satisfying a request of size n from a list of free holes is a problem. First fit and
bestfitarethemostcommonstrategiesusedtoselectafreehole fromthesetofavailable

OperatingSystems BCS303

28 Karthikeyan S M, Asst.Prof.,Dept.of CSE,SVIT, Bangalore.
holes.
3. Theabovealgorithmssufferfromtheproblem ofexternalfragmentation.

 Asfilesareallocatedanddeleted,thefreediskspaceisbrokenintopieces.
 Externalfragmentation existswheneverfreespaceisbrokenintochunks.
 It becomes a problem when the largest contiguous chunk is insufficient for

arequest; storage is fragmented into a number of holes, none of which is
largeenoughtostore thedata.

 Dependingonthetotalamountofdiskstorageandtheaveragefilesize,externalfragme
ntationmaybeaminor oramajorproblem.

LinkedAllocation:

 Solvestheproblemsofcontiguous allocation
 Eachfileisalinked list ofdiskblocks:blocksmaybescatteredanywhereonthedisk
 Thedirectorycontainsapointertothefirstandlastblocksofafile
 Creatinganewfile requiresonlycreationofanew entryinthedirectory
 Writingto afilecausesthefree-spacemanagementsystemtofindafreeblock
 Thisnewblockis writtentoandislinked totheendofthefile
 Readingfromafilerequiresonlyreadingblocksbyfollowingthepointersfromblocktoblock.

Advantages
 Thereisno externalfragmentation
 Anyfreeblocksonthe freelistcanbeusedtosatisfyarequestfordiskspace
 Thesizeofafileneed notbedeclaredwhenthefileiscreated
 Afilecancontinuetogrowaslongasfreeblocksareavailable
 Itisnevernecessarytocompactdiskspaceforthesakeoflinked

allocation(however,fileaccessefficiencymayrequireit)

OperatingSystems BCS303

29 Karthikeyan S M, Asst.Prof.,Dept.of CSE,SVIT, Bangalore.

 Each file is a linked list of disk blocks; the disk blocks may be scattered anywhere on
thedisk.Thedirectorycontainsapointertothefirstandlastblocksofthefile.

 For example, a file of five blocks might start at block 9 and continue at block 16,
thenblock 1, then block 10, and finally block 25. Each block contains a pointer to the
nextblock. These pointers are not made available to the user. A disk address (the
pointer)requires4bytesinthedisk.

 Tocreateanewfile,wesimplycreateanewentryilethedirectory.Withlinkedallocation, each
directory entry has a pointer to the first disk block of the file. This pointeris initialized to
nil (the end-of-list pointer value) to signify an empty file. The size field isalsosetto0.

 A write to the file causes the free-space management system to filed a free block, and
thisnewblockiswrittentoandislinkedtothe endofthefile.

 To read a file, we simply read blocks by following the pointersfromblock to
block.There

is no external fragmentation with linked allocation, and any free block on the free-
spacelistcanbeusedtosatisfyarequest.Thesizeofafileneednotbedeclaredwhenthatfileiscre
ate

d.

 A file can continue to grow as long as free blocks are available. Consequently, it is
nevernecessarytocompactdiskspace.

 Disadvantages:

1. The major problem is that it can be used effectively only for sequential-
accessfiles. To filed the i th block of a file, we must start at the beginning of that

fileandfollowthepointersuntilwegettotheithblock.
2. Space required for the pointers. Solution is clusters. Collect blocks into
multiplesandallocateclustersrather thanblocks
3. Reliability - the files are linked together by pointers scattered all over the
diskandifapointerwerelostordamagedthenallthelinksarelost.

FileAllocationTable:

Asectionofdiskatthebeginningofeachvolumeissetasidetocontainthetable.Thetablehasone
ent
ryforeachdiskblockandisindexedbyblocknumber.

TheFATisusedinmuchthesamewayasalinkedlist.Thedirectoryentrycontainstheblocknum
be
rofthefirstblockofthefile.

 Thetableentryindexedbythat blocknumbercontainstheblock numberofthe next
blockinthefile.

 Thechaincontinuesuntilitreachesthelastblock,whichhasaspecialend-of-
filevalueasthetableentry.

 Anunusedblockisindicatedbyatablevalueof 0.
 ConsideraFATwitha fileconsistingof diskblocks217, 618,and339.

OperatingSystems BCS303

30 Karthikeyan S M, Asst.Prof.,Dept.of CSE,SVIT, Bangalore.
Indexedallocation:

 Bringsallthepointerstogetherintoonelocationcalledindexblock.
 Eachfilehasitsownindexblock,whichisanarrayofdisk-blockaddresses.
 The ith entry in the index block points to theith block of the file. The directory

containsthe
address of the index block. To find and read the ith block, we use the pointer in the
ithindex-block entry.

 When the file is created, all pointers in the index block are set to nil. When the ith block

isfirstwritten,ablockisobtainedfromthefree-
spacemanageranditsaddressisputintheithindex-
block entry.

 Indexed allocation supports direct access, without suffering from external
fragmentation,becauseanyfreeblockonthediskcansatisfyarequestformorespace.

 Disadvantages:
 Suffersfromsomeofthesameperformanceproblemsas linkedallocation
 Indexblockscanbecachedinmemory;however,datablocksmaybespreadalloverthediskv

olume.
 Indexedallocationdoessufferfromwastedspace.
 Thepointeroverheadoftheindexblockisgenerallygreaterthanthepointeroverhea

doflinkedallocation.

OperatingSystems BCS303

31 Karthikeyan S M, Asst.Prof.,Dept.of CSE,SVIT, Bangalore.
If the index block is too small, however, it will not be able to hold enough pointers for a
large
file,and a mechanism will have to be available to deal with this issue. Mechanisms for this
purposeincludethe following:
a) Linked scheme. An index block is normally one disk block. Thus, it can be read and
writtendirectly
byitself.Toallowforlargefiles,wecanlinktogetherseveralindexblocks.Forexample,
an index block might contain a small header giving the name of the file and a set of
thefirst 100
disk-block addresses. The next address (the last word in the index block) is nil (for
asmallfile)orisapointertoanotherindexblock(foralargefile).
b) Multilevel index. A variant of linked representation uses a first-level index block to
point to
aset of second-level index blocks, which in turn point to the file blocks. To access a block,
theoperating system uses the first-level index to find a second-level index block and then
uses
thatblock to find the desired data block. This approach could be continued to a third or
fourth
level,dependingonthedesiredmaximumfilesize

OperatingSystems BCS303

32 Karthikeyan S M, Asst.Prof.,Dept.of CSE,SVIT, Bangalore.
c) Combined scheme. For eg. 15 pointers of the index block is maintained in the file's i
node.The first 12 of these pointers point to direct blocks; that is, they contain addresses
of
blocks thatcontain data of the file. Thus, the data for small files (of no more than 12
blocks) do
not need aseparate index block.If the block size is 4 KB,then up to 48KB of data can be
accesseddirectly. The next three pointers point to indirect blocks. The first points to a
single
indirectblock, which is an index block containing not data but the addresses of blocks
that do
containdata. The second points to a double indirect block, which contains the address of
a block
thatcontains the addresses of blocks that contain pointers to the actual data blocks. The
last
pointercontainstheaddress ofa tripleindirectblock.

Performance
 Contiguousallocationrequiresonlyoneaccesstogetadiskblock.Sincewecaneasilykeep the

initial address of the file in memory, we can calculate immediately the diskaddressofthe
ithblockandreaditdirectly.

 For linked allocation, we can also keep the address of the next block in memory
andread it directly. This method is fine for sequential access. Linked allocation
shouldnotbeusedforanapplicationrequiringdirectaccess.

 Indexed allocation is more complex. If the index block is already in memory, then
theaccess can bemadedirectly.However,keeping the index block inmemory
requiresconsiderable space. If this memory space is not available, then we may have to
read firsttheindexblockandthenthedesireddatablock.
FreeSpaceManagement
Thespacecreatedafterdeletingthefilescanbereused.Anotherimportantaspectofdiskmanag
ement is
keeping track of free space in memory. The list which keeps track of free space
inmemory is called
the free-space list. To create a file, search the free-space list for the requiredamount of
space and
allocate that space to the new file. This space is then removed from the free-space list.
When a file
is deleted, its disk space is added to the free-space list. The free-space list,
isimplementedindifferentwaysasexplainedbelow.
a) BitVector

 Fastalgorithmsexistforquicklyfindingcontiguousblocksofagivensize
 One simple approach is to use a bit vector, in which each bit represents a disk

block,setto1iffreeor0ifallocated.

Forexample,consideradiskwhereblocks2,3,4,5,8,9,10,11,12,13,17and18arefree,andtheres
toftheblock
sareallocated.Thefree-spacebitmapwouldbe
0011110011111100011

 Easytoimplementandalsoveryefficientinfindingthefirstfreeblockor‘n’
consecutivefreeblocks onthedisk.

OperatingSystems BCS303

33 Karthikeyan S M, Asst.Prof.,Dept.of CSE,SVIT, Bangalore.

 Thedown sideisthata 40GBdiskrequiresover5MBjusttostorethebitmap.
b) LinkedList
a. Alinkedlistcanalsobeusedtokeeptrack of allfreeblocks.
b. Traversing the list and/or finding a contiguous block of a given size are not
easy, butfortunately are not frequently needed operations. Generally the
system just adds andremovessingleblocksfromthebeginning ofthelist.
c. TheFATtablekeepstrackofthefreelistasjustone morelinked listonthetable.
c) Grouping
a. A variation on linked list free lists. It stores the addresses of n free blocks in

the firstfreeblock.Thefirstn-
1blocksareactuallyfree.Thelastblockcontainstheaddressesofanothernfree

blocks, andsoon.

b. Theaddress of alargenumberoffreeblocks canbefoundquickly.
d) Counting
a. When therearemultiple contiguous blocks of freespacethen the system
cankeeptrackofthestartingaddressofthegroupandthenumberofcontiguousfreeblo
cks.
b. Ratherthankeepingallistofnfreediskaddresses,wecankeeptheaddressoffirstfreebl
ockandthenumberoffreecontiguousblocksthatfollowthefirstblock.
c. Thustheoverallspaceisshortened.Itissimilartotheextentmethodofallocatingblock
s.
e) SpaceMaps
a. Sun's ZFS file system was designed for huge numbers and sizes of files,
directories,andeven file systems.
b. The resulting data structures could be inefficient if not implemented
carefully.Forexample, freeing up a 1 GB file on a 1 TB file system could
involve updatingthousandsof blocksof free listbitmapsif the
filewasspreadacrossthedisk.
c. ZFSusesacombinationoftechniques,startingwithdividingthediskupinto(hundred
s of)Metaslabsofamanageablesize,eachhavingtheirownspacemap.
d. Free blocks are managed using the counting technique, but rather than write
theinformation to a table, it is recorded in a log-structured transaction record.
Adjacentfreeblocksarealsocoalescedintoalargersinglefreeblock.

e. Anin-
memoryspacemapisconstructedusingabalancedtreedatastructure,constructedfro

mthe log data.
f. The combination of the in-memory tree and the on-disk log provide for very
fast andefficientmanagementoftheseverylargefilesandfreeblocks.

MODULE-5

9. (a). What is a file? What are its attributes? Explain file operations. 10
Marks Answer:
A file is a named collection of related information that is recorded on secondary
storage. The information in a file is defined by its creator. Many different types of
information may be stored in a file-source programs, object programs, executable
programs, numeric data, text payroll records, graphic images, sound recordings, and so
on.
File Attributes:
A file is named, for the convenience of its human users, and is referred to by its name.
A file's attributes vary from one operating system to another but typically consist of
these:
• Name. The symbolic file name is the only information kept in human readable form.
• Identifier. This unique tag, usually a number identifies the file within the file system; it
is the non-human-readable name for the file.
• Type. This information is needed for systems that support different types of files.
• Location. This information is a pointer to a device and to the location of the file on that
device.
• Size. The current size of the file (in bytes, words, or blocks) and possibly the
maximum allowed size are included in this attribute.
• Protection. Access-control information determines who can do reading, writing,
executing, and so on.

• Time, date, and user identification. This information may be kept for creation, last
modification, and last use. These data can be useful for protection, security, and usage
monitoring.

File operations:
The operating system can provide system calls to create, write, read, reposition, delete,
and truncate files.
• Creating a file. Two steps are necessary to create a file. First, space in the file system
must be found for the file. Second, an entry for the new file must be made in the
directory.

• Writing a file. To write a file, we make a system call specifying both the name of the file
and the information to be written to the file.

• Reading a file. To read from a file, we use a system call that specifies the name of the
file and where (in memory) the next block of the file should be put.

• Repositioning within a file. The directory is searched for the appropriate entry, and
the current-file-position pointer is repositioned to a given value, Repositioning
within a file need not involve any actual I/O. This file operation is also known as a
file seek.

• Deleting a file. To delete a file, we search the directory for the named file. Having
found the associated directory entry, we release all file space, so that it can be
reused by other files, and erase the directory entry.

• Truncating a file. The user may want to erase the contents of a file but keep its
attributes. Rather than forcing the user to delete the file and then recreate it, this
function allows all attributes to remain unchanged-except for file length-but lets the
file be reset to length zero and its file space released.

(or)

10 A. Explain the access matrix method of system protection with the domain
as objects and its implementation. 6 Marks

Answer:
Access Matrix
 The model of protection can be viewed abstractly as a matrix, called an access matrix.
 The rows of the access matrix represent domains, and the columns represent objects.
Each entry in the matrix consists of a set of access rights.
 The entry access(i,j) defines the set of operations that a process executing in domain Di

can invoke on object Oj.

 To illustrate these concepts, we consider the access matrix shown in Figure below.
 There are four domains and four objects-three files (F1, F2, F3) and one laser printer. A
process executing in domain D1 can read files F1 and F3 .
 A process executing in domain D4 has the same privileges as one executing in domain D1;
but in addition, it can also write onto files F1 and F3.

 Note that the laser printer can be accessed only by a process executing in domain D2.

 The access-matrix scheme provides us with the mechanism for specifying a variety of
policies.
 The mechanism consists of implementing the access matrix and ensuring that the
semantic properties we have outlined indeed hold.
 More specifically, we must ensure that a process executing in domain Di can access
only those objects specified in row i, and then only as allowed by the access-matrix
entries.

Implementation of Access Matrix
How can the access matrix be implemented effectively? In general the matrix will be
sparse; that is, most of the entries will be empty. Although data structure techniques are

available for representing sparse matrices, they are not particularly useful for this
application, because of the way in which the protection facility is used.
Methods:

 Global Table
 Access Lists for Objects
 Capability Lists for Domains
 A Lock-Key Mechanism

 10 B. Cylinder Range: 0 to 4999
 Current Head Position: 143
 Previous Head Position: 125 (Not directly relevant for calculations, but shows direction)
 Request Queue (FIFO Order): 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130

1. FCFS (First-Come, First-Served)
FCFS processes requests in the order they arrive.

 143 -> 86 -> 1470 -> 913 -> 1774 -> 948 -> 1509 -> 1022 -> 1750 -> 130
 Distance: |143-86| + |86-1470| + |1470-913| + |913-1774| + |1774-948| + |948-1509| +

|1509-1022| + |1022-1750| + |1750-130|
 Total Distance: 6408

2. SSTF (Shortest Seek Time First)
SSTF selects the request closest to the current head position.

 143 -> 130 -> 86 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774
 Distance: |143-130| + |130-86| + |86-913| + |913-948| + |948-1022| + |1022-1470| + |1470-

1509| + |1509-1750| + |1750-1774|
 Total Distance: 2363

3. SCAN (Elevator Algorithm)
SCAN moves the head in one direction, servicing requests along the way, then reverses direction.
We need to know the current direction. Since the previous request was at 125 and the current is
at 143, we'll assume the head is moving upwards (towards higher cylinder numbers).

 Upward Sweep: 143 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774 -> 4999 (end of
disk)

 Downward Sweep: 4999 -> 130 -> 86
 Distance: |143-913| + |913-948| + |948-1022| + |1022-1470| + |1470-1509| + |1509-1750| +

|1750-1774| + |1774-4999| + |4999-130| + |130-86|
 Total Distance: 7084

4. LOOK
LOOK is similar to SCAN but stops at the last request in each direction, not necessarily the disk
ends.

 Upward Sweep: 143 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774
 Downward Sweep: 1774 -> 130 -> 86
 Distance: |143-913| + |913-948| + |948-1022| + |1022-1470| + |1470-1509| + |1509-1750| +

|1750-1774| + |1774-130| + |130-86|
 Total Distance: 3319

5. C-LOOK (Circular LOOK)
C-LOOK moves in one direction only, then jumps back to the lowest request.

 143 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774 -> 86 -> 130
 Distance: |143-913| + |913-948| + |948-1022| + |1022-1470| + |1470-1509| + |1509-1750| +

|1750-1774| + |1774-86| + |86-130|
 Total Distance: 3371

Summary Table:

Algorithm Total Distance

FCFS 6408

SSTF 2363

SCAN 7084

LOOK 3319

C-LOOK 3371

GOOD LUCK

	Process State
	semaphore chopstick [5] ;

