




1 a) List and explain any three features of the Object Oriented Programming. 
 
The three OOP features are – 
1. Encapsulation 
2. Inheritance 
3. Polymorphism 
 
1. Encapsulation: 
● Encapsulation is the mechanism that binds together code and data it manipulates, and 
keeps both safe from outside interference and misuse. 
● Encapsulation is the wrapping of data and function or method into a single unit. 
● Encapsulation is a protective wrapper that prevents the code and data from being arbitrarily 
accessed by other code defined outside the wrapper. Access to the code and data inside the 
wrapper is tightly controlled through a well-defined interface. 
 
In Java, the basis of encapsulation is the class. A class defines the structure and behavior (data 
and code) that a set of objects will share. Objects are referred to as instances of a class. 
Thus, a class is a logical construct; an object has physical reality. (Class is like a blueprint of a 
building and object is the real building). The code and data that constitute a class is collectively 
called members of the class. The data are referred to as member variables or instance variables. 
The code that operates on the data is referred to as member methods or just methods. Methods 
define how the member variables can be used. That is, the behavior and interface of a class are 
defined by the methods that operate on its instance data. 
 
There are mechanisms for hiding the complexity of the implementation inside the class because 
the purpose of the class is to encapsulate complexity. Each member or variable in a class can be 
marked private or public. The public interface of a class represents everything that external users 
of the class need to know. The private methods and data can only be accessed by code that is a 
member of the class. Any other code that is not a member of the class cannot access a private 
method or variable. 
 
2. Inheritance: 
1. Inheritance is the process by which one object acquires the properties of another object. 
2. Inheritance supports the concept of hierarchical classification. For example, a Golden Retriever 
belongs to the class - dog, a dog, in turn, is part of the class mammal, and mammals are under the 
larger class animal. Mammals are called the subclass of animals and animals are called the 
mammal’s superclass. 
3. Without inheritance, each object has to define all of its characteristics explicitly. But, by use 
of inheritance, an object needs to define only those qualities that make it unique within its class. It 
inherits its general attributes from its parent. Therefore, it is the inheritance mechanism that makes 
it possible for one object to be a specific instance of a more general case. 



 
4. Inheritance interacts with encapsulation. If a given class encapsulates some attributes, then 
any subclass will have the same attributes plus any that it adds as part of its specialization. It is this 
key concept that lets object-oriented programs grow in complexity linearly rather than 
geometrically. A new sub-class inherits all of the attributes of all of its ancestors. It does not have 
unpredictable interactions with the majority of the rest of the code in the system. 
 
3. Polymorphism: 
Polymorphism in Greek means “many forms”. It is a feature that allows one interface to be used for 
a general class of actions. The specific action is determined by the exact nature of the situation. 
For example, consider a program to implement three types of stacks, say, one for integer values, 
one for floating-point values, and one for characters. The algorithm that implements each stack is 
the same, but the data stored is different. In a process-oriented model, we have to create three 
different stack routines each with different names. However, because of polymorphism, in Java we 
can create a general set of stack routines, all having the same name. 
 
The concept of polymorphism is expressed by the phrase “one interface, multiple methods.” It 
means that it is possible to design a generic interface to a group of related activities. Polymorphism 
helps reduce complexity by allowing the same interface to be used to specify a general class of 
action. It is the compiler’s job to select the specific action (or interface or method) as it applies to 
each situation. The programmer need not select the method manually. 
 
1 b) What do you mean by type conversion and type casting? Give examples. 

Java’s Automatic Conversions: When one type of data is assigned to another type of variable, an 
automatic type conversion will take place if the following two conditions are met:  
1. The two types are compatible.  



2. The destination type is larger than the source type  
 
When these two conditions are met, a widening conversion takes place. For widening 
conversions, the numeric types, including integer and floating-point types are compatible with 
each other. There are no automatic conversions from the numeric types to char or boolean. 
Also char or boolean are not compatible with each other. Java also performs an automatic type 
conversion when storing a literal integer constant into variables of type byte, short, long, or char.  

Casting Incompatible Types: If we want to assign an int value to a byte variable, conversion 
will not be performed automatically, because a byte is smaller than an int. This kind of conversion is 
called narrowing conversion since we are explicitly making the value narrower so that it will fit 
into the target type.  

To create a conversion between the two incompatible types, we must use a cast. A cast is 
simply an explicit type conversion.  

The general form of cast is -  
(target-type) value  

target-type specifies the desired type to convert the specified value to. 
For example to cast an int to a byte  
int a=20;  
byte b; 
 b= (byte) a; 
 
If the integer value is larger than the range of a byte, it will be reduced modulo (the remainder of 
an integer division by the) byte’s range. A different type of conversion called truncation will occur 
when a floating-point value is assigned to an integer type. Integers do not have fractional components. 
Hence when a floating point value is assigned to an integer type, the fractional component is lost. 
For example, if the value 1.23 is assigned to an integer, the resulting value will be 1. The 0.23 will be 
truncated. If the size of the whole number component is too large to fit into the target integer type, then 
the value will be reduced modulo the target type’s range. 
 
1 c) How do you declare and initialize 1-D and 2-D arrays in Java? Give Example 

One-Dimensional Arrays:  

A one-dimensional array is a list of similar data type variables. The general form of the 
one-dimensional array is  

type var-name[];  

The type determines the data type of each element of the array.  



Example:  

int month_days[ ];  

Even though the above declaration tells that month_days is an array variable, no array exists. The 
value of month_days is set to null, that is, it represents an array with no value. To link month_days 
with an actual, physical array of integers, we must allocate memory using new and assign it to 
month_days.  
 
new is a special operator that allocates memory. The syntax to allocate memory using the new 
operator is  
array-var = new type [size];  
Example:  
month_days = new int [12];  
Now, the month_days will refer to an array of 12 integers. At the same time all the elements in 
the array will be initialized to zero.  

The following program demonstrates one dimensional 
array // Program to demonstrate one-dimensional array 
class Array { 

public static void main(String args[]) {  
int month_days[];  
month_days = new int[12];  
month_days[0] = 31;  
month_days[1] = 28;  
month_days[2] = 31;  
month_days[3] = 30;  
month_days[4] = 31;  
month_days[5] = 30;  
month_days[6] = 31;  
month_days[7] = 31;  
month_days[8] = 30;  
month_days[9] = 31;  
month_days[10] = 30;  
month_days[11] = 31;  
System.out.println(“April has “ + month_days[3] + “ days. “); 

 }  
}  

One step process to define a array:  



It is possible to combine the declaration of the array variable with the allocation of the array as 
shown below : Syntax: type array-var [ ] = new type [size];  

Example: int month_days[] = new int [12];  

Initialization of one dimensional array: Arrays can be initialized when they are declared. An array 
initializer is a list of comma-separated expressions surrounded by curly braces. The commas separate 
the values of the array elements. The array will be automatically created large enough to hold the 
number of elements you specify in the array initializer. There is no need to use new.  
Example:  
class AutoArray {  

public static void main(String args[]) {  
int month_days [] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };  
System.out.println(“April has “ + month_days[3] + “ days. “);  

}  
}  

TWO DIMENSIONAL ARRAYS:  
In Java, multidimensional arrays are array of arrays. To declare a multidimensional array 
variable, specify each element index using another set of square brackets.  
Syntax:  
type var-name[ ] [ ];  
var-name = new type [size] [size];  
or  

type var-name [ ] [ ] = new type [size] [size];  
 
Example int twoD [ ] [ ];  
twoD = new int [4][5];  
or  
int twoD[ ] [ ] = new int [4][5];  

The following program demonstrates a two-dimensional array 
class TwoDArray {  

public static void main(String args[]) {  
int twoD [ ] [ ] = new int [4] [5];  
int i, j, k=0;  
for(i=0;i<4;i++)  

for(j=0;j<5;j++) {  
twoD[i][j] = k;  
k++;  
}  



 
for(i=0;i<4;i++) {  
for(j=0;j<5;j++)  

System.out.print (twoD[i][j] + “ “);  
System.out.println();  
} 

}  
}  

The above program numbers each element in the array from the left to right, top to bottom, and then 

displays those values. 
 

The output of the program is -  
0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 
16 17 18 19  

When you allocate memory for a multidimensional array, we need to only specify the memory for 
the first (leftmost) dimension. Then we can allocate the remaining dimensions separately.  

Example  
int twoD[] [] = new int[4][];  
twoD[0] = new int[5];  
twoD[1] = new int[5];  
twoD[2] = new int[5]; 
 twoD[3] = new int[5];  

The advantage of allocating the second dimension array separately is we need not allocate the same 
number of elements for each dimension.  

The following program creates a two-dimensional array in which the size of the second dimension is 
unequal.  

// Program to demonstrate differing sizes in the second dimension 
class TwoDAgain { 
    public static void main(String args[]) { 
        int twoD[][] = new int[4][]; 
        twoD[0] = new int[1]; 
        twoD[1] = new int[2]; 
        twoD[2] = new int[3]; 
        twoD[3] = new int[4]; 
 
        int i, j, k = 0; 



 
        // Initialize the array with values 
        for (i = 0; i < 4; i++) { 
            for (j = 0; j < i + 1; j++) { 
                twoD[i][j] = k; 
                k++; 
            } 
        } 
 
        // Display the array 
        for (i = 0; i < 4; i++) { 
            for (j = 0; j < i + 1; j++) { 
                System.out.print(twoD[i][j] + " "); 
            } 
            System.out.println(); 
        } 
    } 
} 

 
INITIALIZATION OF TWO-DIMENSIONAL ARRAYS:  

The following example demonstrates how to initialize a multi-dimensional array  

// Program to initialize two dimensional array class Matrix {  
public static void main(String args[]) {  

int array [ ] [ ] = {  
{ 1, 2, 3, 4 },  
{ 2, 3, 4, 5 },  
{ 3, 4, 5, 6 },  
{ 4, 5, 6, 7 }  

};  
int i, j;  
for(i=0;i<4;i++) {  

for(j=0;j<i+4;j++)  
System.out.print(twoD[i][j] + “ “);  

System.out.println();  
}  

The output of this program is  
1 2 3 4  



2 3 4 5  
3 4 5 6 
 4 5 6 7  

 
2 a) List the short circuit operators and show the concept using few examples. 
Short-Circuit Operators: 
Java provides two Boolean operators not found in many other computer languages. These are 
secondary versions of the Boolean AND and OR operators and are known as short-circuit 
operators. 
 
The OR operator results in true when the left-hand operand is true, no matter what the right-hand 
operand is. Similarly, the AND operator results in false when the left-hand operand is false, no 
matter what the right-hand operand is.  
When we use || and && forms, rather than | and & forms of these operators, Java will not bother to 
evaluate the right-hand operand when the outcome of the expression can be determined by the left 
operand alone. 
 
Example 
if (denom !=0 && num /denom > 10) 
 
As the short circuit form of && is used, there is no risk of causing a run-time exception when 
denom is zero. If this line of code were written using the single & version of AND, both sides would 
be evaluated, causing a run-time exception when denom is zero. 
 
2 b) With a Java program illustrate the use of the ternary operator to find the greatest of 
three numbers. 
 
The?: Operator: 
Java includes a ternary (three-way) operator that can replace certain types of 
if-then-else-statements. 
 
The operator is ?: 
 
General form: 
expression1 ? Expression2 : expression3 
 
expression1 can be any expression that evaluates to a boolean value. 
If expression1 is true then expression2 is evaluated, else, expression3 is evaluated. 
 
Example: 
ratio = denom == 0 ? 0 : num /denom; 
if denom equals zero, then the expression between the question mark and the colon is 
evaluated and used as the value of the entire ? Expression. 
If denom is not equal to zero, then the expression after the colon is evaluated and used for the 



value of the entire ? Expression. 
The result is then assigned to the ratio. 
 
Program to find the greatest of three numbers using ternary operator -  
 
import java.util.Scanner; 
 
class GreatestUsingTernary { 
    public static void main(String[] args) { 
        Scanner sc = new Scanner(System.in); 
 
        // Taking input from user 
        System.out.print("Enter first number: "); 
        int a = sc.nextInt(); 
        System.out.print("Enter second number: "); 
        int b = sc.nextInt(); 
        System.out.print("Enter third number: "); 
        int c = sc.nextInt(); 
 
        // Using nested ternary operator to find the greatest number 
        int max = (a > b) ? (a > c ? a : c) : (b > c ? b : c); 
 
        // Printing the result 
        System.out.println("The greatest number is: " + max); 
        sc.close(); 
    } 
} 
 
2 c) Develop a Java program to demonstrate the working of for each version of for loop. 
Initialize the 2-D array with values and print them using for each loop. 
 
public class ForEach2DArray { 
    public static void main(String[] args) { 
        // Initializing a 2D array 
        int[][] numbers = { 
            {1, 2, 3}, 
            {4, 5, 6}, 
            {7, 8, 9} 
        }; 
 
        // Using for-each loop to iterate through the 2D array 
        System.out.println("Elements of the 2D array:"); 
        for (int[] row : numbers) {  // Iterating through each row 
            for (int num : row) {    // Iterating through each element in the row 



                System.out.print(num + " "); 
            } 
            System.out.println();  // Move to the next line after printing a row 
        } 
    } 
} 
 
3a) Develop a Java program to implement a stack of integers. 
import java.util.Scanner; 
 
class Stack { 
    private int top;       // Index of the top element 
    private int[] stack;   // Array to store stack elements 
    private int maxSize;   // Maximum capacity of the stack 
 
    // Constructor to initialize the stack 
    public Stack(int size) { 
        maxSize = size; 
        stack = new int[maxSize]; 
        top = -1; // Stack is initially empty 
    } 
 
    // Push operation: Add element to stack 
    public void push(int value) { 
        if (top == maxSize - 1) { 
            System.out.println("Stack Overflow! Cannot push " + value); 
        } else { 
            stack[++top] = value; 
            System.out.println(value + " pushed into the stack."); 
        } 
    } 
 
    // Pop operation: Remove and return top element 
    public int pop() { 
        if (top == -1) { 
            System.out.println("Stack Underflow! Cannot pop."); 
            return -1; 
        } else { 
            return stack[top--]; 
        } 
    } 
 
    // Peek operation: View the top element 
    public int peek() { 



        if (top == -1) { 
            System.out.println("Stack is empty!"); 
            return -1; 
        } else { 
            return stack[top]; 
        } 
    } 
 
    // Check if stack is empty 
    public boolean isEmpty() { 
        return top == -1; 
    } 
 
    // Display stack elements 
    public void display() { 
        if (top == -1) { 
            System.out.println("Stack is empty!"); 
        } else { 
            System.out.print("Stack elements: "); 
            for (int i = top; i >= 0; i--) { 
                System.out.print(stack[i] + " "); 
            } 
            System.out.println(); 
        } 
    } 
} 
 
public class StackImplementation { 
    public static void main(String[] args) { 
        Scanner sc = new Scanner(System.in); 
 
        // Initialize stack of size 5 
        Stack stack = new Stack(5); 
 
        // Menu-driven approach 
        while (true) { 
            System.out.println("\nStack Operations:"); 
            System.out.println("1. Push"); 
            System.out.println("2. Pop"); 
            System.out.println("3. Peek"); 
            System.out.println("4. Check if Empty"); 
            System.out.println("5. Display Stack"); 
            System.out.println("6. Exit"); 
            System.out.print("Enter your choice: "); 



 
            int choice = sc.nextInt(); 
            switch (choice) { 
                case 1: 
                    System.out.print("Enter value to push: "); 
                    int value = sc.nextInt(); 
                    stack.push(value); 
                    break; 
                case 2: 
                    int popped = stack.pop(); 
                    if (popped != -1) { 
                        System.out.println("Popped element: " + popped); 
                    } 
                    break; 
                case 3: 
                    int topElement = stack.peek(); 
                    if (topElement != -1) { 
                        System.out.println("Top element: " + topElement); 
                    } 
                    break; 
                case 4: 
                    System.out.println(stack.isEmpty() ? "Stack is empty." : "Stack is not empty."); 
                    break; 
                case 5: 
                    stack.display(); 
                    break; 
                case 6: 
                    System.out.println("Exiting..."); 
                    sc.close(); 
                    System.exit(0); 
                    break; 
                default: 
                    System.out.println("Invalid choice! Try again."); 
            } 
        } 
    } 
} 
 
Output: 
Stack Operations: 
1. Push 
2. Pop 
3. Peek 
4. Check if Empty 



5. Display Stack 
6. Exit 
Enter your choice: 1 
Enter value to push: 10 
10 pushed into the stack. 
 
Enter your choice: 1 
Enter value to push: 20 
20 pushed into the stack. 
 
Enter your choice: 3 
Top element: 20 
 
Enter your choice: 2 
Popped element: 20 
 
Enter your choice: 5 
Stack elements: 10  
 
Enter your choice: 6 
Exiting... 
 
3 b) What are constructors? Give the types and explain the properties of constructors, 
support with appropriate examples. 

A constructor in Java is a special method used to initialize objects. It is called automatically 
when an object is created with the same name as the class. 

Properties of Constructors: 
1. Name Same as Class 

○ The constructor must have the same name as the class. 
2. No Return Type 

○ Constructors do not have a return type, not even void. 
3. Automatic Invocation 

○ Constructors are automatically invoked when an object is created using the new 
keyword. 

4. Overloading 
○ Constructors can be overloaded, meaning a class can have multiple 

constructors with different parameter lists. 
Types of Constructors 

1. Default constructor 
2. Explicit Parameterless Constructor 
3. Parameterized constructor 



4. Copy constructor 
 

1. Default Constructor 
○ A constructor with no parameters. 
○ If no constructor is explicitly defined in a class, the Java compiler 

automatically provides a default constructor. 
○ It initializes the object with default values (e.g., null for objects, 0 for 

integers, false for booleans). 

Example program: 
class MyClass { 
    int num; 
    String str; 
 
    // Default constructor (provided by the compiler if not explicitly defined) 
    MyClass() { 
        num = 0; 
        str = null; 
    } 
} 
 
public class Main { 
    public static void main(String[] args) { 
        MyClass obj = new MyClass(); // Default constructor is called 
        System.out.println("num: " + obj.num); // Output: num: 0 
        System.out.println("str: " + obj.str); // Output: str: null 
    } 
} 
 
2.  Explicit Parameterless Constructor 

A user can define their parameterless constructor to initialize an object with default 
values. 

Example Program 
class Student { 
    String name; 
    int age; 
 
    // Parameterless constructor 
    public Student() { 
        name = "Unknown"; 
        age = 18; 
    } 



 
    void display() { 
        System.out.println("Name: " + name + ", Age: " + age); 
    } 
} 
 
public class Main { 
    public static void main(String[] args) { 
        Student s1 = new Student(); // Calls the parameterless constructor 
        s1.display(); // Output: Name: Unknown, Age: 18 
    } 
} 
 
3. Parameterized Constructor 

● A constructor that takes one or more parameters. 
● Used to initialize objects with specific values passed as arguments. 

Example Program: 
class Student { 
    String name; 
    int age; 
 
    // Parameterized constructor 
    Student(String n, int a) { 
        name = n; 
        age = a; 
    } 
} 
 
public class Main { 
    public static void main(String[] args) { 
        Student student = new Student("Alice", 20); // Parameterized constructor is called 
        System.out.println("Name: " + student.name); // Output: Name: Alice 
        System.out.println("Age: " + student.age);   // Output: Age: 20 
    } 
} 
 
4. Copy Constructor 

● A constructor that takes an object of the same class as a parameter and copies 
its values to the new object. 

● Used to create a copy of an existing object. 

Example Program: 
class Point { 



    int x, y; 
 
    // Parameterized constructor 
    Point(int x, int y) { 
        this.x = x; 
        this.y = y; 
    } 
 
    // Copy constructor 
    Point(Point p) { 
        this.x = p.x; 
        this.y = p.y; 
    } 
} 
 
public class Main { 
    public static void main(String[] args) { 
        Point p1 = new Point(10, 20); // Parameterized constructor 
        Point p2 = new Point(p1);     // Copy constructor 
        System.out.println("p2.x: " + p2.x); // Output: p2.x: 10 
        System.out.println("p2.y: " + p2.y); // Output: p2.y: 20 
    } 
} 
 

4a) Illustrate with an example program to pass objects as arguments. 
 
 
In Java, objects can be passed as arguments to methods just like primitive data types. When an 
object is passed, its reference (memory address) is passed, allowing the method to access and 
modify the original object's properties. 
 
// Class representing a simple Rectangle 
class Rectangle { 
    int length, breadth; 
 
    // Constructor to initialize the rectangle 
    Rectangle(int l, int b) { 
        length = l; 
        breadth = b; 
    } 
 
    // Method that takes another Rectangle object as an argument 
    void compareArea(Rectangle r) { 
        int area1 = this.length * this.breadth; 



        int area2 = r.length * r.breadth; 
 
        if (area1 > area2) { 
            System.out.println("Current rectangle is larger."); 
        } else if (area1 < area2) { 
            System.out.println("Passed rectangle is larger."); 
        } else { 
            System.out.println("Both rectangles have the same area."); 
        } 
    } 
} 
 
// Main class to demonstrate passing objects 
public class ObjectAsArgument { 
    public static void main(String[] args) { 
        Rectangle rect1 = new Rectangle(5, 10);  // Create first object 
        Rectangle rect2 = new Rectangle(6, 8);   // Create second object 
 
        // Compare areas of two rectangle objects 
        rect1.compareArea(rect2); 
    } 
} 
 
Class Rectangle has two instance variables length and breadth. 
A constructor initializes these values. 
The method compareArea(Rectangle r) accepts another Rectangle object as an argument and 
compares its area with the current object. 
The main method creates two Rectangle objects and calls compareArea to compare their areas. 
 
 
4b) Explain different access specifies in Java with example program. 
 
Access Specifiers in Java 
 
Access specifiers (or access modifiers) in Java define the scope and visibility of classes, methods, 
and variables.  
Java provides four types of access specifiers: 
 

1. Public 
2. Private 
3. Protected 
4. Default (No Modifier) 

 
1. Public Access Specifier 



A public member is accessible from anywhere in the program. It can be accessed from different 
classes and packages. 
 
package demo1;  // Package demo1 
 
// Class with a public method 
public class PublicExample { 
    public void display() { 
        System.out.println("Public method is accessible anywhere."); 
    } 
} 
 
package demo2;  // Different package 
 
import demo1.PublicExample;  // Importing the class 
 
public class TestPublic { 
    public static void main(String[] args) { 
        PublicExample obj = new PublicExample(); // Allowed 
        obj.display();  // Accessible 
    } 
} 
 
Output: 
 
Public method is accessible anywhere. 
 
2. Private Access Specifier 
 
A private member is accessible only within the same class. It cannot be accessed by other classes, 
even in the same package. 
 
class PrivateExample { 
    private int data = 50; 
 
    private void show() { 
        System.out.println("This is a private method."); 
    } 
 
    public void accessPrivate() { 
        System.out.println("Accessing private variable: " + data); 
        show();  // Private method can be accessed within the same class 
    } 
} 



 
public class TestPrivate { 
    public static void main(String[] args) { 
        PrivateExample obj = new PrivateExample(); 
        obj.accessPrivate(); // Allowed 
        // obj.show();  // Not allowed (Compile-time error) 
        // System.out.println(obj.data);  // Not allowed (Compile-time error) 
    } 
} 
 
Output: 
 
Accessing private variable: 50 
This is a private method. 
Error if we directly access obj.data or obj.show(). 
 
3. Protected Access Specifier 
 
A protected member is accessible: Within the same package. In subclasses (even in different 
packages). 
 
package demo1; 
public class ProtectedExample { 
    protected void show() { 
        System.out.println("Protected method can be accessed in subclasses."); 
    } 
} 
 
package demo2; 
import demo1.ProtectedExample; 
 
// Subclass in a different package 
class SubClass extends ProtectedExample { 
    public void callShow() { 
        show();  // Allowed in subclass 
    } 
} 
 
public class TestProtected { 
    public static void main(String[] args) { 
        SubClass obj = new SubClass(); 
        obj.callShow(); 
    } 
} 



 
Output: 
Protected method can be accessed in subclasses. 
 
4. Default (No Modifier) Access Specifier 
 
When no modifier is specified, it is called default access. The member is accessible only within the 
same package. It cannot be accessed outside the package. 
 
package demo1; 
class DefaultExample { 
    void display() { 
        System.out.println("Default method is accessible within the same package."); 
    } 
} 
 
public class TestDefault { 
    public static void main(String[] args) { 
        DefaultExample obj = new DefaultExample(); 
        obj.display();  // Allowed 
    } 
} 
 
If you try to access DefaultExample from another package, you'll get a compile-time error. 
 

 
 

 



5a) Define inheritance. List and explain different types of inheritance in Java with code 
snippets 
 
Inheritance is a fundamental concept of Object-Oriented Programming (OOP) where one class 
(child class) derives properties and behaviors from another class (parent class). It enables code 
reusability and hierarchical classification. 
 
In Java, inheritance is implemented using the extends keyword. 
 
Types of Inheritance in Java: 
Java supports the following types of inheritance: 
 

1. Single Inheritance  
2. Multilevel Inheritance  
3. Hierarchical Inheritance  
4. Multiple Inheritance using Interfaces 

 
Note: Java does not support multiple inheritance with classes to avoid ambiguity but allows it 
through interfaces. 
 
1. Single Inheritance 
 
One class inherits from a single parent class. 
The child class gets access to all non-private methods and variables of the parent class. 
 
// Parent class 
class Animal { 
    void sound() { 
        System.out.println("Animals make sound."); 
    } 
} 
 
// Child class inheriting Animal 
class Dog extends Animal { 
    void bark() { 
        System.out.println("Dog barks."); 
    } 
} 
 
public class SingleInheritanceDemo { 
    public static void main(String[] args) { 
        Dog d = new Dog(); 
        d.sound();  // Inherited method 
        d.bark(); 
    } 
} 
 



Output: 
 
Animals make sound. 
Dog barks. 
 
2. Multilevel Inheritance 
 
A chain of inheritance where a class inherits from another class, which in turn inherits from 
another class. 
 
// Base class 
class Animal { 
    void sound() { 
        System.out.println("Animals make sound."); 
    } 
} 
 
// Intermediate class inheriting Animal 
class Mammal extends Animal { 
    void type() { 
        System.out.println("Mammals give birth to young ones."); 
    } 
} 
 
// Derived class inheriting Mammal 
class Dog extends Mammal { 
    void bark() { 
        System.out.println("Dog barks."); 
    } 
} 
 
public class MultilevelInheritanceDemo { 
    public static void main(String[] args) { 
        Dog d = new Dog(); 
        d.sound();  // From Animal 
        d.type();   // From Mammal 
        d.bark();   // From Dog 
    } 
} 
 
Output: 
 
Animals make sound. 
Mammals give birth to young ones. 
Dog barks. 
 



3. Hierarchical Inheritance 
 
Multiple child classes inherit from a single parent class. 
// Parent class 
class Animal { 
    void sound() { 
        System.out.println("Animals make sound."); 
    } 
} 
 
// Child class 1 
class Dog extends Animal { 
    void bark() { 
        System.out.println("Dog barks."); 
    } 
} 
 
// Child class 2 
class Cat extends Animal { 
    void meow() { 
        System.out.println("Cat meows."); 
    } 
} 
 
public class HierarchicalInheritanceDemo { 
    public static void main(String[] args) { 
        Dog d = new Dog(); 
        d.sound(); 
        d.bark(); 
 
        Cat c = new Cat(); 
        c.sound(); 
        c.meow(); 
    } 
} 
 
Output: 
 
Animals make sound. 
Dog barks. 
Animals make sound. 
Cat meows. 
 
4. Multiple Inheritance (Using Interfaces) 
 
Java does not support multiple inheritance with classes to prevent ambiguity (diamond problem). 



However, multiple inheritance is possible using interfaces. 
 
 
// First interface 
interface Printable { 
    void print(); 
} 
 
// Second interface 
interface Showable { 
    void show(); 
} 
 
// Class implementing both interfaces 
class MultipleInheritanceDemo implements Printable, Showable { 
    public void print() { 
        System.out.println("Printing..."); 
    } 
 
    public void show() { 
        System.out.println("Showing..."); 
    } 
 
    public static void main(String[] args) { 
        MultipleInheritanceDemo obj = new MultipleInheritanceDemo(); 
        obj.print(); 
        obj.show(); 
    } 
} 
 
Output: 
Printing... 
Showing… 
 
 

 



 
5b) Compare and contrast between overloading and overriding in Java with example 
program for each. 
 

Feature Method Overloading Method Overriding 

Definition Defining multiple methods with the 
same name but different parameters 
within the same class. 

Redefining a method from the parent 
class in the child class with the same 
signature. 

Where does it 
occurs? 

Within the same class. Between parent and child class 
(inheritance required). 

Parameters Must be different (either in 
number, type, or both). 

Must be same as in the parent class. 

Return Type Can be different. Must be same or a subtype of the return 
type in the parent class. 

Access 
Modifiers 

No restrictions. Cannot reduce the visibility (e.g., a  
public method cannot be overridden as 
private). 

Static Methods Can be overloaded. Cannot be overridden (but can be 
hidden). 

Final Methods Can be overloaded. Cannot be overridden. 

Performance Slightly faster as it is resolved at 
compile time. 

Slightly slower due to runtime 
polymorphism (dynamic method 
dispatch). 

Keyword Used No specific keyword needed. Uses @override annotation (optional but 
recommended). 

 
1. Method Overloading  
 
Multiple methods with same name but different parameters in the same class. 
 
class MathOperations { 
    // Method 1: Adding two integers 
    int add(int a, int b) { 
        return a + b; 
    } 
 
    // Method 2: Adding three integers (Overloaded method) 
    int add(int a, int b, int c) { 



        return a + b + c; 
    } 
 
    // Method 3: Adding two double values (Overloaded method) 
    double add(double a, double b) { 
        return a + b; 
    } 
} 
 
public class OverloadingDemo { 
    public static void main(String[] args) { 
        MathOperations obj = new MathOperations(); 
 
        System.out.println("Sum (int, int): " + obj.add(5, 10)); 
        System.out.println("Sum (int, int, int): " + obj.add(5, 10, 15)); 
        System.out.println("Sum (double, double): " + obj.add(5.5, 10.5)); 
    } 
} 
 
Output: 
Sum (int, int): 15 
Sum (int, int, int): 30 
Sum (double, double): 16.0 
 
2. Method Overriding  
 
A subclass provides a new implementation for a method already defined in the parent class. 
 
// Parent class 
class Animal { 
    void sound() { 
        System.out.println("Animals make different sounds."); 
    } 
} 
 
// Child class overriding the method 
class Dog extends Animal { 
    @Override 
    void sound() { 
        System.out.println("Dog barks."); 
    } 
} 
 
public class OverridingDemo { 
    public static void main(String[] args) { 
        Animal a = new Animal(); 



        a.sound();  // Calls parent class method 
 
        Dog d = new Dog(); 
        d.sound();  // Calls overridden method in Dog class 
    } 
} 
 
Output: 
 
Animals make different sounds. 
Dog barks. 
 
 
6a) Analyze an interface in Java and list out the speed of an interface. Illustrate with the 
help of a program the importance of an interface. 
 
An interface in Java is a blueprint of a class that contains only abstract methods and constants 
(before Java 8). It is used to achieve abstraction and multiple inheritance. 
 
Declared using the interface keyword. 
 
Methods inside an interface are implicitly public and abstract. Variables inside an interface are 
implicitly public, static, and final. A class implements an interface using the implements 
keyword.  Since Java 8, interfaces can also have default and static methods. 
 
Memory Usage: Interfaces do not store state (instance variables), so they are lightweight. 
Execution Speed: Calling a method via an interface reference is slightly slower than a direct 
method call in an abstract class due to dynamic method dispatch.  
Compilation Speed: Interfaces compile as fast as abstract classes. 
Runtime Efficiency: If an interface is used extensively, JVM optimizations like inlining and 
just-in-time compilation (JIT) help reduce performance overhead. 
 
 
Scenario: Implementing Multiple Inheritance Using Interfaces 
 
Java does not support multiple inheritance with classes, but it allows multiple inheritance using 
interfaces. 
 
// Interface 1: Animal 
interface Animal { 
    void eat();  // Abstract method 
} 
 
// Interface 2: Pet 
interface Pet { 
    void play(); 
} 



 
// Class implementing multiple interfaces 
class Dog implements Animal, Pet { 
    // Implementing methods from interfaces 
    public void eat() { 
        System.out.println("Dog eats food."); 
    } 
 
    public void play() { 
        System.out.println("Dog plays with a ball."); 
    } 
} 
 
public class InterfaceDemo { 
    public static void main(String[] args) { 
        Dog d = new Dog(); 
        d.eat();  // Call method from Animal interface 
        d.play(); // Call method from Pet interface 
    } 
} 
 
Output: 
Dog eats food. 
Dog plays with a ball. 
 
 
6b) List the different uses of final and demonstrate each with the of code snippets 
 
The keyword final can be used in three situations in Java: 

1. To create the equivalent of a named constant.  
2. To prevent method overriding.  
3. To prevent Inheritance 

 
To create the equivalent of a named constant: A variable can be declared as final. Doing so 
prevents its contents from being modified. This means that you must initialize a final variable 
when it is declared. 
 
For example: 
final int FILE_NEW = 1; 
 
To prevent method overriding: Sometimes, we do not want a super class method to be 
overridden in the subclass. Instead, the same super class method definition has to be used by 
every subclass. In such situation, we can prefix a method with the keyword final as shown below 
– 
 
class A 
{ 



final void meth() 
{ 
System.out.println("This is a final method."); 
} 
} 
class B extends A 
{ 
void meth() // ERROR! Can't override. 
{ 
System.out.println("Illegal!"); 
} 
} 
 
To prevent Inheritance: As we have discussed earlier, the subclass is treated as a specialized 
class and super class is most generalized class. During multi-level inheritance, the bottom most 
class will be with all the features of real-time and hence it should not be inherited further. In such 
situations, we can prevent a particular class from inheriting further, using the keyword final.  
For example – 
 
final class A 
{ 
// ... 
} 
class B extends A // ERROR! Can't subclass A 
{ 
// ... 
} 
 
 
7a) Define a package. Explain how to create user defined package with example. 
 
A package in Java is a collection of related classes and interfaces. It helps in organizing code, 
avoiding name conflicts, and enhancing reusability. 
 
 

1. Create a package using the package keyword. 
2. Compile the package using javac -d . Filename.java. 
3. Import and use the package in another class using import package_name.*;. 

 
Example: Creating and Using a User-Defined Package 
 
Step 1: Create a Package (mypackage) 
 
Save the following code as MyClass.java inside a directory. 
 
// Step 1: Declare a package 
package mypackage; 



 
// Step 1.1: Create a class inside the package 
public class MyClass { 
    public void display() { 
        System.out.println("This is a user-defined package example."); 
    } 
} 
 
Step 2: Compile the Package 
Run the following command in the terminal (inside the directory containing MyClass.java): 
 
javac -d . MyClass.java 
This will create a folder named mypackage containing the compiled .class file. 
 
Step 3: Use the Package in Another Class 
Create another Java file in the same directory and save it as TestPackage.java. 
 
// Step 1: Import the package 
import mypackage.MyClass; 
 
public class TestPackage { 
    public static void main(String[] args) { 
        MyClass obj = new MyClass();  // Create object of class in package 
        obj.display();  // Call method 
    } 
} 
 
Step 4: Compile and Run the Program 
 
Compile the main program: 
javac TestPackage.java 
 
Run the program: 
java TestPackage 
 
Output: 
 
This is a user-defined package example. 
 

 



7b) Discuss about exception handling in Java. Give the framework of the exception 
handling block. List the types of exception. 
 
Exception handling in Java is a mechanism to handle runtime errors and ensure the smooth 
execution of a program. It prevents abnormal program termination by catching and handling 
errors gracefully. 
 
An exception is an unexpected event that disrupts normal program flow. 
Java provides a structured way to handle exceptions using the try-catch-finally blocks. 
Framework of Exception Handling in Java 
 
Java provides five key exception handling constructs: 
 

1. try – Contains the code that may cause an exception. 
2. catch – Catches and handles the exception. 
3. finally – Block that executes always, whether an exception occurs or not. 
4. throw – Used to explicitly throw an exception. 
5. throws – Declares exceptions that a method can throw. 

 
General Syntax: 
 
try { 
    // Code that may cause an exception 
} catch (ExceptionType e) { 
    // Handling the exception 
} finally { 
    // Code that executes always (optional) 
} 
 
Example of Exception Handling 
 
public class ExceptionHandlingDemo { 
    public static void main(String[] args) { 
        try { 
            int result = 10 / 0; // ArithmeticException occurs 
            System.out.println("Result: " + result); 
        } catch (ArithmeticException e) { 
            System.out.println("Exception caught: " + e); 
        } finally { 
            System.out.println("This block always executes."); 
        } 
    } 
} 
 
Output: 
Exception caught: java.lang.ArithmeticException: / by zero 
This block always executes. 



Types of Exceptions in Java 
 
1. Checked Exceptions (Compile-time Exceptions) 
 
Exceptions that the compiler forces you to handle. 
Occur at compile-time and must be handled using try-catch or throws. 
 
Examples: 
 IOException (File not found) 
 SQLException (Database errors) 
 ClassNotFoundException (Class not found) 
 
import java.io.*; 
 
public class CheckedExceptionDemo { 
    public static void main(String[] args) { 
        try { 
            FileReader file = new FileReader("test.txt");  // FileNotFoundException 
        } catch (FileNotFoundException e) { 
            System.out.println("File not found: " + e); 
        } 
    } 
} 
 
2. Unchecked Exceptions (Runtime Exceptions) 
 
Exceptions that occur at runtime and are not checked at compile-time. 
Usually caused by logical errors in the program. 
  
Examples: 
ArithmeticException (Divide by zero) 
NullPointerException (Accessing an object with null reference) 
ArrayIndexOutOfBoundsException (Accessing an array out of bounds) 
 
public class UncheckedExceptionDemo { 
    public static void main(String[] args) { 
        int[] arr = new int[5]; 
        System.out.println(arr[10]);  // ArrayIndexOutOfBoundsException 
    } 
} 
 
3. Errors 
 
Severe issues that the application cannot recover from. 
Usually related to system-level problems. 
Examples: 



 StackOverflowError (Infinite recursion) 
 OutOfMemoryError (Heap memory exhausted) 
 
public class ErrorDemo { 
    public static void recursiveMethod() { 
        recursiveMethod(); // Infinite recursion causes StackOverflowError 
    } 
 
    public static void main(String[] args) { 
        recursiveMethod(); 
    } 
} 
 
 
7c) Develop a Java program to raise a custom exception for division by zero using try, 
catch, throw and finally. 
 
 
// Step 1: Create a custom exception class 
class DivideByZeroException extends Exception { 
    // Constructor 
    public DivideByZeroException(String message) { 
        super(message); 
    } 
} 
 
public class CustomExceptionDemo { 
    // Step 2: Method to perform division 
    public static int divide(int a, int b) throws DivideByZeroException { 
        if (b == 0) { 
            throw new DivideByZeroException("Error: Division by zero is not allowed!"); 
        } 
        return a / b; 
    } 
 
    public static void main(String[] args) { 
        try { 
            // Step 3: Try to divide numbers 
            int result = divide(10, 0);  // This will cause an exception 
            System.out.println("Result: " + result); 
        } catch (DivideByZeroException e) { 
            // Step 4: Catch the custom exception 
            System.out.println("Exception caught: " + e.getMessage()); 
        } finally { 
            // Step 5: Finally block executes always 
            System.out.println("Execution completed."); 
        } 



    } 
} 
 
Output: 
 
Exception caught: Error: Division by zero is not allowed! 
Execution completed. 
 
Custom Exception (DivideByZeroException) 
Inherits from Exception class. 
Used to display a custom message. 
Throwing the Exception (throw) 
The divide method checks if b == 0, and if so, it throws DivideByZeroException. 
Catching the Exception (try-catch) 
The main method calls divide(10, 0), causing the exception. 
The catch block catches the exception and prints a message. 
Finally Block (finally) 
Ensures that "Execution completed." is printed whether an exception occurs or not. 
 
8a) Compare throw and throws keyword by providing suitable example program. 
 
Both throw and throws are used for exception handling in Java, but they serve different purposes.  
 
 
 

Feature throw throws 

Definition Used to explicitly throw an exception 
from within a method or block of 
code. 

Used to declare exceptions that a 
method might throw, passing the 
responsibility to the caller. 

Usage  Can be used within a method to 
throw a specific exception.  

Used in the method signature to 
indicate that a method may throw 
an exception. 

Scope Used inside the method body to 
trigger an exception. 

Used in the method signature to 
specify exceptions that a method 
might throw. 

Example 
 

throw new Exception("Message")  public void myMethod() throws 
Exception 

Types of 
Exceptions 

Can throw both checked and 
unchecked exceptions.  

Can declare only checked 
exceptions. 

Multiple 
Exceptions  

You can throw a single exception at a 
time. 

You can declare multiple  xceptions 
using a omma-separated list. 



 
throw is used inside a method to explicitly throw an exception. 
throws is used in the method signature to declare that a method might throw an exception. 
The responsibility for handling exceptions declared by throws lies with the caller, while 
exceptions thrown using throw are immediately handled or passed further up.  
 
Java Program: Using throw and throws 
 
// Custom exception class for Division by Zero 
class DivideByZeroException extends Exception { 
    public DivideByZeroException(String message) { 
        super(message); 
    } 
} 
 
public class ThrowVsThrowsDemo { 
 
    // Method that throws an exception explicitly (using 'throw') 
    public static int divide(int a, int b) throws DivideByZeroException { 
        if (b == 0) { 
            // Using 'throw' to raise the custom exception 
            throw new DivideByZeroException("Error: Division by zero is not allowed."); 
        } 
        return a / b; 
    } 
 
    // Method that declares the exception (using 'throws') 
    public static void performDivision(int a, int b) throws DivideByZeroException { 
        // This method may throw an exception, so we declare it using 'throws' 
        int result = divide(a, b); 
        System.out.println("Result: " + result); 
    } 
 
    public static void main(String[] args) { 
        try { 
            // Call performDivision which throws a DivideByZeroException 
            performDivision(10, 0);  // This will throw the exception 
        } catch (DivideByZeroException e) { 
            // Handle the exception 
            System.out.println("Exception caught: " + e.getMessage()); 
        } 
    } 
} 
 
throw Keyword: 
 



Inside the divide method, we use throw to explicitly throw a DivideByZeroException if b == 0. 
The exception is thrown manually when division by zero is detected. 
throws Keyword: 
 
In the performDivision method, we use throws to declare that this method may throw a 
DivideByZeroException. The responsibility of handling the exception is passed to the method's 
caller (which is the main method in this case). 
Exception Handling in main: 
 
The main method calls performDivision(10, 0). Since performDivision declares that it throws 
DivideByZeroException, we handle the exception in the catch block. 
 
Output: 
Exception caught: Error: Division by zero is not allowed. 
 
 
8b) Explain about the need for finally block. 
 
The finally block in Java is an important part of exception handling. It provides a way to ensure 
that certain cleanup actions are performed, regardless of whether an exception occurs or not. This 
ensures that resources are properly released, and any necessary cleanup tasks are executed after 
the try-catch block. 
 
Syntax of the finally Block: 
 
try { 
    // Code that may cause an exception 
} catch (ExceptionType e) { 
    // Handling the exception 
} finally { 
    // Code that will execute regardless of exception (cleanup code) 
} 
 
finally will execute after the try block, regardless of whether an exception is thrown or caught. 
The finally block is optional, but it is recommended to use when resources need to be cleaned up 
or finalized. 
 
 
import java.io.*; 
 
public class FinallyBlockDemo { 
    public static void main(String[] args) { 
        FileReader file = null; 
 
        try { 
            // Open the file 
            file = new FileReader("testfile.txt"); 



            // Simulating an exception (e.g., file not found) 
            int data = file.read(); 
            System.out.println("File Data: " + data); 
        } catch (IOException e) { 
            // Handling the exception 
            System.out.println("Error reading the file: " + e); 
        } finally { 
            // Cleanup code (close the file stream) 
            try { 
                if (file != null) { 
                    file.close(); 
                    System.out.println("File closed successfully."); 
                } 
            } catch (IOException e) { 
                System.out.println("Error closing the file: " + e); 
            } 
        } 
    } 
} 
 
Output: 
Error reading the file: java.io.FileNotFoundException: testfile.txt (No such file or directory) 
File closed successfully. 
 
In the try block, we attempt to read from a file. If the file is not found, an IOException will be 
thrown. 
The catch block handles the exception and prints the error message. 
Regardless of whether an exception is thrown or not, the finally block ensures that the file is 
closed, preventing any potential resource leak. 
 
Guaranteed Execution: The finally block always executes, even if: 
An exception is thrown and not caught. 
A return statement is executed in the try or catch block. 
A System.exit() is called. 
When finally Doesn’t Execute: 
 
If the JVM crashes or the program terminates abnormally, the finally block may not execute. 
If the thread executing the try-catch-finally is interrupted or killed during execution, the finally 
block might not run. 
 
 
8c) Discuss about chained exceptions. 
 
Chained exceptions in Java refer to the mechanism where one exception is caused by another 
exception. It allows the propagation of exceptions in a chain, helping to track the original cause 
of the error. This concept is useful when handling complex issues, as it allows you to link related 
exceptions together, providing a more comprehensive explanation of what went wrong. 



 
Chained exceptions help us understand the sequence of errors that led to the failure, making it 
easier to trace the root cause of the problem. 
Chained exceptions provide more contextual information about the exception, helping 
developers debug the program more efficiently. 
In scenarios where multiple errors happen, chaining allows the original error to be passed along, 
while each new exception provides additional details. 
Chaining exceptions improves error reporting by preserving the original exception's context and 
including it in the new exception. 
 
Java provides a mechanism for chaining exceptions using the Throwable constructor.  
 
Specifically: 
Throwable(Throwable cause): Allows you to associate an exception with another exception. 
Throwable(String message, Throwable cause): Provides both a message and the underlying 
cause. 
 
Syntax of Chained Exceptions: 
 
try { 
    // Code that may throw an exception 
} catch (Exception e) { 
    throw new SomeException("A new exception occurred", e);  // Chaining the original exception 
} 
 
The second parameter (e) in the constructor represents the cause of the new exception, i.e., the 
original exception that was thrown. 
 
// Custom exception for demonstrating chaining 
class InvalidInputException extends Exception { 
    public InvalidInputException(String message) { 
        super(message); 
    } 
} 
 
class DataProcessingException extends Exception { 
    public DataProcessingException(String message, Throwable cause) { 
        super(message, cause);  // Chaining the cause (another exception) 
    } 
} 
 
public class ChainedExceptionDemo { 
    public static void main(String[] args) { 
        try { 
            processData("123abc");  // Invalid input will cause an exception 
        } catch (DataProcessingException e) { 



            System.out.println("Exception: " + e.getMessage()); 
            System.out.println("Caused by: " + e.getCause()); 
        } 
    } 
 
    // Method that throws an exception based on input 
    public static void processData(String input) throws DataProcessingException { 
        try { 
            if (!input.matches("\\d+")) {  // Check if input is not a valid number 
                throw new InvalidInputException("Input is not a valid number"); 
            } 
            // Simulating further processing logic 
            System.out.println("Processing data: " + input); 
        } catch (InvalidInputException e) { 
            // Catch the original exception and chain it into a new exception 
            throw new DataProcessingException("Error processing data", e); 
        } 
    } 
} 
 
Output: 
 
Exception: Error processing data 
Caused by: InvalidInputException: Input is not a valid number 
 
 
9a) Define thread. Demonstrate creation of multiple threads with a program. 
 
A thread in Java is a lightweight process that allows multiple tasks to run concurrently within a 
program. Threads are the smallest unit of execution and share the resources of the parent process, 
such as memory and file handles. Java supports multithreading, which is the ability to run 
multiple threads concurrently, improving the performance of the program. 
 
Java provides two ways to create a thread: 
 

1. By Extending the Thread class 
2. By Implementing the Runnable interface 

 
1. Creating Multiple Threads by Extending the Thread Class 
 
// Extending the Thread class 
class MyThread extends Thread { 
    @Override 
    public void run() { 
        // Code that will be executed by this thread 
        System.out.println(Thread.currentThread().getId() + " is executing the thread."); 
    } 



} 
 
public class ThreadDemo { 
    public static void main(String[] args) { 
        // Creating multiple threads 
        MyThread t1 = new MyThread(); 
        MyThread t2 = new MyThread(); 
        MyThread t3 = new MyThread(); 
 
        // Starting the threads 
        t1.start();  // Thread 1 starts 
        t2.start();  // Thread 2 starts 
        t3.start();  // Thread 3 starts 
    } 
} 
 
We create a class MyThread that extends the Thread class. 
The run() method defines the code to be executed by the thread. This method is overridden. 
We create three instances of the MyThread class and start them using the start() method. 
Each thread runs concurrently, and the output will show different thread IDs executing. 
 
Output: 
1 is executing the thread. 
2 is executing the thread. 
3 is executing the thread. 
 
2. Creating Multiple Threads by Implementing the Runnable Interface 
 
// Implementing the Runnable interface 
class MyRunnable implements Runnable { 
    @Override 
    public void run() { 
        // Code that will be executed by this thread 
        System.out.println(Thread.currentThread().getId() + " is executing the Runnable."); 
    } 
} 
 
public class RunnableThreadDemo { 
    public static void main(String[] args) { 
        // Creating Runnable instances 
        MyRunnable myRunnable = new MyRunnable(); 
 
        // Creating Thread instances and passing the Runnable 
        Thread t1 = new Thread(myRunnable); 
        Thread t2 = new Thread(myRunnable); 
        Thread t3 = new Thread(myRunnable); 



 
        // Starting the threads 
        t1.start();  // Thread 1 starts 
        t2.start();  // Thread 2 starts 
        t3.start();  // Thread 3 starts 
    } 
} 
 
We define a class MyRunnable that implements the Runnable interface. 
The run() method is overridden to define the task for the thread. 
We create three Thread objects, passing the Runnable object as an argument to the Thread 
constructor. 
Each thread is started using the start() method. 
 
Output: 
1 is executing the Runnable. 
2 is executing the Runnable. 
3 is executing the Runnable. 
 
9b) Explain the two ways in which Java threads can be instantiated. Support your 
explanation with a sample program. 
 
Two Ways to Instantiate Threads in Java 
 

1. By Extending the Thread class 
2. By Implementing the Runnable interface 

 
Both methods allow you to define a task that a thread will execute, but the approach for each is 
slightly different. Let's explore both methods and see how they can be used with an example 
program. 
 
1. Instantiating a Thread by Extending the Thread Class 
 
In this approach, we extend the Thread class and override its run() method, which defines the 
code that the thread will execute. 
 
Steps: 
Create a class that extends the Thread class. 
Override the run() method to define the task. 
Create an object of the extended Thread class and call start() to begin execution. 
 
// Step 1: Create a class that extends Thread 
class MyThread extends Thread { 
    @Override 
    public void run() { 
        // Code to be executed by the thread 



        System.out.println(Thread.currentThread().getId() + " is executing the thread by extending 
Thread class."); 
    } 
} 
 
public class ThreadExample1 { 
    public static void main(String[] args) { 
        // Step 2: Create instances of MyThread class 
        MyThread t1 = new MyThread(); 
        MyThread t2 = new MyThread(); 
         
        // Step 3: Start the threads 
        t1.start();  // Start thread t1 
        t2.start();  // Start thread t2 
    } 
} 
 
MyThread extends the Thread class and overrides the run() method. 
We create two instances of MyThread and call start() to initiate the threads. 
start() internally calls run(), which contains the task the thread will execute. 
 
Output: 
1 is executing the thread by extending Thread class. 
2 is executing the thread by extending Thread class. 
 
2. Instantiating a Thread by Implementing the Runnable Interface 
 
In this approach, we implement the Runnable interface, which requires us to override the run() 
method. This method contains the code to be executed by the thread. 
 
Steps: 
Create a class that implements the Runnable interface. 
Override the run() method to define the task. 
Create a Thread object and pass an instance of the Runnable class to it. 
Call start() to begin execution. 
 
// Step 1: Create a class that implements Runnable interface 
class MyRunnable implements Runnable { 
    @Override 
    public void run() { 
        // Code to be executed by the thread 
        System.out.println(Thread.currentThread().getId() + " is executing the thread by 
implementing Runnable interface."); 
    } 
} 
 



public class ThreadExample2 { 
    public static void main(String[] args) { 
        // Step 2: Create an instance of MyRunnable 
        MyRunnable myRunnable = new MyRunnable(); 
         
        // Step 3: Create Thread objects and pass the Runnable instance 
        Thread t1 = new Thread(myRunnable); 
        Thread t2 = new Thread(myRunnable); 
         
        // Step 4: Start the threads 
        t1.start();  // Start thread t1 
        t2.start();  // Start thread t2 
    } 
} 
 
MyRunnable implements the Runnable interface and overrides the run() method. 
A Thread object is created by passing the Runnable instance (myRunnable) to the Thread 
constructor. 
Calling start() will invoke the run() method and execute the task. 
 
Output: 
1 is executing the thread by implementing Runnable interface. 
2 is executing the thread by implementing Runnable interface. 
 
 
10a)What is enumeration? Explain the methods values() and valueof(). 
 
An enumeration (enum) in Java is a special data type that defines a collection of constants. It is 
used to represent a fixed set of related constants, such as days of the week, months of the year, 
directions, etc. Enums provide a type-safe way of handling these constants, ensuring that only 
valid values are used. 
 
Enums are implicitly final and cannot be subclassed. 
Enums can have fields, methods, and constructors. 
They are type-safe, meaning only predefined values (constants) can be assigned to an enum type. 
 
Syntax for Enum: 
 
enum EnumName { 
    CONSTANT1, CONSTANT2, CONSTANT3; // Enum constants 
} 
 
Methods of Enum: values() and valueOf() 

1. values(): A method automatically provided by the compiler that returns an array of all the 
constants in the enum, which can be iterated over. 



2. valueOf(): A method automatically provided by the compiler that converts a string to its 
corresponding enum constant, throwing an IllegalArgumentException if the string does 
not match a constant. 

 
1. values() Method: 
 
The values() method is a static method that is automatically added to every enum type by the 
Java compiler. 
It returns an array of all enum constants defined in the enum, in the order they are declared. 
 
You can use the values() method to iterate over the constants of the enum. 
 
Example: 
 
enum Day { 
    SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY; 
} 
 
public class EnumExample { 
    public static void main(String[] args) { 
        // Using values() to get all enum constants 
        Day[] days = Day.values(); 
         
        for (Day day : days) { 
            System.out.println(day); 
        } 
    } 
} 
 
Output: 
 
SUNDAY 
MONDAY 
TUESDAY 
WEDNESDAY 
THURSDAY 
FRIDAY 
SATURDAY 
 
The values() method returns an array of the enum constants. 
We iterate through this array and print each constant (day of the week). 
 
2. valueOf() Method: 
 
The valueOf() method is a static method that is automatically provided for each enum. 
It converts a string to the corresponding enum constant. 



If the string passed to valueOf() doesn't match any of the enum constants, it throws an 
IllegalArgumentException. 
 
You can use the valueOf() method to get an enum constant based on its name (string value). 
 
Example: 
 
enum Day { 
    SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY; 
} 
 
public class EnumExample { 
    public static void main(String[] args) { 
        // Using valueOf() to get enum constant from string 
        String dayString = "MONDAY"; 
        Day day = Day.valueOf(dayString);  // Convert string to enum constant 
         
        System.out.println("Enum constant for " + dayString + ": " + day); 
    } 
} 
 
Output: 
 
Enum constant for MONDAY: MONDAY 
 
The valueOf() method takes the string "MONDAY" and converts it into the corresponding 
Day.MONDAY enum constant. 
If the string passed does not match an enum constant (e.g., "FUNDAY"), it will throw an 
IllegalArgumentException. 
 
 
enum Day { 
    SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY; 
} 
 
public class EnumExample { 
    public static void main(String[] args) { 
        try { 
            // Trying an invalid string value 
            Day day = Day.valueOf("FUNDAY"); // This will throw an exception 
        } catch (IllegalArgumentException e) { 
            System.out.println("Exception: " + e); 
        } 
    } 
} 
 



Output: 
Exception: java.lang.IllegalArgumentException: No enum constant Day.FUNDAY 
 
 
10b) Explain about type wrappers and auto boxing. 
 
In Java, primitive types (like int, double, char, etc.) are not objects, but sometimes we need to 
treat them as objects for various reasons (e.g., collections, generic types). Wrapper classes are 
used to wrap these primitive types into corresponding objects. These wrapper classes are part of 
the java.lang package and they provide useful methods to convert between primitive types and 
objects. 
 
For each primitive data type, there is a corresponding wrapper class: 
 
byte → Byte 
short → Short 
int → Integer 
long → Long 
float → Float 
double → Double 
char → Character 
boolean → Boolean 
 
Example: 
 
int x = 10; 
Integer integerObject = new Integer(x);  // Boxing 
System.out.println(integerObject);        // Unboxing 
 
Auto-boxing and Unboxing: 
 
1. Auto-boxing: 
 
Auto-boxing is the automatic conversion of primitive types into their corresponding wrapper 
objects by the Java compiler. 
 
For example, assigning an int to an Integer object automatically performs the conversion. 
 
Example of Auto-boxing: 
 
public class AutoBoxingExample { 
    public static void main(String[] args) { 
        int x = 10; 
         
        // Auto-boxing: The primitive int x is automatically converted to Integer object 
        Integer y = x; 
         



        System.out.println("Auto-boxed value: " + y); 
    } 
} 
 
Output: 
 
Auto-boxed value: 10 
 
In this example, the int variable x is automatically converted into an Integer object y without 
explicitly calling the new Integer(x) constructor. This is auto-boxing. 
 
2. Unboxing: 
 
Unboxing is the reverse process of auto-boxing, where the wrapper object is automatically 
converted back to its corresponding primitive type. 
 
Example of Unboxing: 
 
public class UnBoxingExample { 
    public static void main(String[] args) { 
        Integer y = new Integer(10);  // Boxing 
         
        // Unboxing: The Integer object is automatically converted to primitive int 
        int x = y; 
         
        System.out.println("Unboxed value: " + x); 
    } 
} 
 
Output: 
 
Unboxed value: 10 
 
In this case, the Integer object y is automatically converted back to the primitive int when it is 
assigned to the primitive variable x. This is unboxing.  


	Properties of Constructors: 
	Types of Constructors 

