

1a. Define Data structures. With a neat diagram, explain the classification of Data structures with

examples. (8 marks)

Diagram – 5 marks

Explanation with Examples – 3 marks

Data structure is a representation of the logical relationships existing between individual elements of data. The

logical or mathematical model of a particular organization of data is called a data structure.

 Primitive data structures allow storing only one value at a particular location. Primitive data structures of

any programming language are the data types that are predefined in that programming language.

 boolean:- The Boolean data type allows storing two values only i.e. true and false. Mostly boolean data type

is used for testing the conditions.

 char:- The character data type allows you to store a single character. It stores ASCII assigned values of

the lower case alphabets, upper case alphabets and some special symbols.

 integer:- Integer are used to store the value of the numeric type. It allows for storing both negative and

positive values.

 float:- The float data type allows you to store the floating value.

 Non-primitive data structures are the data structure created by the programmer with the help of primitive data

structures. Non-primitive data structures are divided into linear and non-linear data structures

 Array:- Array is a linear data structure that stores the elements of similar data types at a contiguous memory

location.

 Stack:- Stack is a linear data structure that works on the principle of LIFO(Last In First Out) which allows

insertion and deletion of elements from one end only i.e. top.

 Queue:- Queue is a linear data structure that works on the principle of FIFO(First In First Out) which allows

the insertion of elements at one end i.e. rear and deletion of elements from another end i.e. front.

 Tree:- Tree is a non-linear data structure that stores the element as nodes in the form of a hierarchical (parent-

child) relationship.

https://www.scaler.com/topics/primitive-data-structure/

 Graph: A Graph is a non-linear data structure that consists of vertices (nodes) and edges.

1b. Write a C functions to implement pop, push and display operations for stacks using arrays. (7 marks)

 Syntax- 2 marks
 Logic – 5 marks

1c. Differentiate structures and unions. (5 marks)

 Explanation with keyword – 5 marks

2a. Write an algorithm to evaluate postfix expression and apply the same for the given postfix expression
6 2 / 3 – 4 2 * +. (7 marks)

 Algorithm – 5 marks

 evaluating the expression – 2 marks

2b. Explain the Dynamic memory allocation function in detail (8 marks)

 Types – 2 marks
 Explanation – 5 marks
 Syntax – 1 marks

 Dynamic Memory Allocation can be defined as a procedure in which the size of a data structure (like Array)

is changed during the runtime. C provides some functions to achieve these tasks. There are 4 library functions

provided by C defined under <stdlib.h> header file to facilitate dynamic memory allocation in C programming.

They are:

 malloc()

 calloc()

 free()

 realloc()

malloc()

 The name "malloc" stands for memory allocation. The malloc() function reserves a block of memory

of the specified number of bytes. And, it returns a pointer of void which can be casted into pointers of any

form.

Syntax of malloc()

ptr = (castType*) malloc(size);

calloc()

 The name "calloc" stands for contiguous allocation. The malloc() function allocates memory and

leaves the memory uninitialized, whereas the calloc() function allocates memory and initializes all bits to

zero.

Syntax of calloc()
ptr = (castType*)calloc(n, size);

free()

 Dynamically allocated memory created with either calloc() or malloc() doesn't get freed on their own.

You must explicitly use free() to release the space. This statement frees the space allocated in the memory

pointed by ptr.

Syntax of free()
free(ptr);

https://www.programiz.com/c-programming/c-pointers

realloc()

 If the dynamically allocated memory is insufficient or more than required, you can change the size of

previously allocated memory using the realloc() function.

Syntax of realloc()
ptr = realloc(ptr, x);

2c. Define sparse matrix. For the given sparse matrix, give the linked list representation:

 (5marks)

 Definition – 2 marks

 linked list representation – 3 marks

 A sparse matrix is a matrix in which most of the elements are zero. This type of matrix is useful in

scenarios where storage and computational efficiency are critical, as we can store only the non-zero

elements rather than all elements, including the zeros.

In linked list, each node has four fields. These four fields are defined as:

 Row: Index of row, where non-zero element is located

 Column: Index of column, where non-zero element is located

 Value: Value of the non-zero element located at index – (row,column)

 Next node: Address of the next node.

3a. Define queue. Discuss how to represent a queue using dynamic arrays (8 marks)

 Definition – 4 marks

 Representation – 4 marks

 Queue is a linear data structure that works on the principle of FIFO (First In First Out)

which allows the insertion of elements at one end i.e. rear and deletion of elements from another

end i.e. front.

#include <stdio.h>
#include <stdlib.h>
#define MAX 10

struct node
{
 int data;
 struct node *link;

}*front, *rear;

// function protypes
void insert();
void delete();
void queue_size();
void check();
void first_element();

void main()
{
 int choice, value;

 while(1)
 {
 printf("enter the choice \n");
 printf("1 : create an empty queue \n2 : Insert element\n");
 printf("3 : Dequeue an element \n4 : Check if empty\n");
 printf("5. Get the first element of the queue\n");
 printf("6. Get the number of entries in the queue\n");
 printf("7. Exit\n");
 scanf("%d", &choice);
 switch (choice) // menu driven program
 {
 case 1:
 printf("Empty queue is created with a capacity of %d\n", MAX);
 break;
 case 2:
 insert();
 break;
 case 3:
 delete();
 break;
 case 4:
 check();
 break;
 case 5:
 first_element();
 break;
 case 6:
 queue_size();
 break;
 case 7:
 exit(0);
 default:
 printf("wrong choice\n");
 break;
 }
 }
}

// to insert elements in queue
void insert()
{
 struct node *temp;

 temp = (struct node*)malloc(sizeof(struct node));
 printf("Enter value to be inserted \n");
 scanf("%d", &temp->data);
 temp->link = NULL;

 if (rear == NULL)
 {
 front = rear = temp;
 }
 else
 {
 rear->link = temp;
 rear = temp;
 }
}

// delete elements from queue
void delete()
{
 struct node *temp;

 temp = front;
 if (front == NULL)
 {
 printf("queue is empty \n");
 front = rear = NULL;
 }
 else
 {
 printf("deleted element is %d\n", front->data);
 front = front->link;
 free(temp);
 }
}

// check if queue is empty or not
void check()
{
 if (front == NULL)
 printf("\nQueue is empty\n");
 else
 printf("*************** Elements are present in the queue **************\n");
}

// returns first element of queue
void first_element()
{
 if (front == NULL)
 {
 printf("**************** The queue is empty ****************\n");
 }
 else
 printf("**************** The front element is %d ***********\n", front->data);
}

// returns number of entries and displays the elements in queue
void queue_size()
{
 struct node *temp;

 temp = front;
 int cnt = 0;
 if (front == NULL)
 {
 printf(" queue empty \n");

 }
 while (temp)
 {
 printf("%d ", temp->data);
 temp = temp->link;
 cnt++;
 }
 printf("********* size of queue is %d ******** \n", cnt);
}

3b. Write a C Function to implement Insertion(), deletion() and display() operations on circular

queue (6 marks)

Logic – 4 marks

Syntax – 2 marks

3c.Write a note on Multiple stacks and Queues with suitable diagram. (6 marks)

Explanation – 4 marks

With Example Code – 2 marks

4a. What is Linked list? Explain the Different types of linked list with a neat diagram (6 marks)

Explanation-3 marks

Example with Diagrams – 3 marks

 A linked list is a linear data structure, in which the elements are not stored at contiguous memory locations.

The elements in a linked list are linked using pointers. In simple words, a linked list consists of nodes where

each node contains a data field and a reference (link) to the next node in the list.

Types of Linked Lists:

1. Singly Linked List
2. Doubly Linked List
3. Singly Circular Linked List
4. Doubly Circular linked list

Singly Linked List

 Singly linked list is the simplest type of linked list in which every node contains some data and a

pointer to the next node of the same data type. The node contains a pointer to the next node means that the

node stores the address of the next node in the sequence. A single linked list allows the traversal of data only

in one way.

Doubly Linked List

 A doubly linked list or a two-way linked list is a more complex type of linked list that contains a

pointer to the next as well as the previous node in sequence. Therefore, it contains three parts of data, a pointer

to the next node, and a pointer to the previous node. This would enable us to traverse the list in the backward

direction as well.

Singly Circular Linked List

 A Singly circular linked list is a type of linked list in which the last node’s next pointer points

back to the first node of the list, creating a circular structure. This design allows for continuous traversal of

the list, as there is no null to end the list.

Doubly Circular linked list

 Doubly Circular linked list or a circular two-way linked list is a complex type of linked list that

contains a pointer to the next as well as the previous node in the sequence

4b. write the c function for following on singly linked list with example:

 i) Insert a node at beginning

ii) Delete a node at the beginning

iii) Display (8 marks)

Logic – 5 marks

Syntax – 3 mark

 i) Insert a node at beginning

ii) Delete a node at the beginning

iii) Display

4c.Write a C function to add two polynomials (6 marks)

 Logic – 3marks

 Syntax – 3marks

struct polynomial {

 int coeff, x, y, z;

 struct polynomial *link;

};

typedef struct polynomial *POLYNOMIAL;

POLYNOMIAL create() {

 POLYNOMIAL getnode;

 getnode = (POLYNOMIAL)malloc(sizeof(struct polynomial));

 if (getnode == NULL) {

 printf("\nMemory couldn't be allocated!!!");

 return 0;

 }

 return getnode;

}

POLYNOMIAL insert(POLYNOMIAL head, int c, int px, int py, int pz) {

 POLYNOMIAL node, temp;

 node = create();

 node->coeff = c;

 node->x = px;

 node->y = py;

 node->z = pz;

 node->link = NULL;

 temp = head->link;

 while (temp->link != head) { /* Traverse till the end of the list. */

 temp = temp->link;

 }

 temp->link = node; /* Attach the node to the end of the list. */

 node->link = head; /* Assign the address of the head to node's link. */

 return head;

}

POLYNOMIAL input_polynomial(POLYNOMIAL head) {

 int i, c, px, py, pz;

 printf("\nEnter 999 to end the polynomial!!!");

 for (i = 1;; i++) {

 printf("\nEnter the coefficient %d: ", i);

 scanf("%d", &c);

 if (c == 999) /* Breaks the loop when 999 is entered indicating end of

input. */

 break;

 printf("\nEnter the power of x: ");

 scanf("%d", &px);

 printf("\nEnter the power of y: ");

 scanf("%d", &py);

 printf("\nEnter the power of z: ");

 scanf("%d", &pz);

 head = insert(head, c, px, py, pz);

 }

 return head;

}

void display(POLYNOMIAL head) {

 POLYNOMIAL temp;

 if (head->link == head) {

 printf("\nPolynomial doesn't exist!!!");

 } else {

 temp = head->link;

 while (temp != head) {

 printf("%dx^%dy^%dz^%d + ", temp->coeff, temp->x, temp->y, temp-

>z);

 temp = temp->link;

 }

 printf("999");

 }

}

int evaluate_polynomial(POLYNOMIAL head) {

 int vx, vy, vz, sum = 0;

 POLYNOMIAL temp;

 printf("\n\nEnter the value of x, y and z: ");

 scanf("%d%d%d", &vx, &vy, &vz);

 temp = head->link;

 while (temp != head) {

 sum = sum + (temp->coeff * pow(vx, temp->x) * pow(vy, temp->y) *

pow(vz, temp->z));

 temp = temp->link;

 }

 return sum;

}

int main() {

 POLYNOMIAL head;

 int res;

 head = create();

 head->link = head;

 printf("\nEnter the polynomial to be evaluated: ");

 head = input_polynomial(head);

 printf("\nThe given polynomial is: ");

 display(head);

 res = evaluate_polynomial(head);

 printf("\nThe result after evaluation is: %d", res);

 }

5a. Discuss how binary trees are represented using: i) Array ii) Linked List (6 marks)

 Array Representation – 3 marks

 Linked list representation – 3 marks

 Binary tree is a tree data structure (non-linear) in which each node can have at most two children which

are referred to as the left child and the right child. The topmost node in a binary tree is called the root, and

the bottom-most nodes are called leaves.

 Representation of Binary Trees

There are two primary ways to represent binary trees:

 Linked Node Representation

 Array Representation

1. Linked Node Representation

This is the simplest way to represent a binary tree. Each node contains data and pointers to its left and

right children.

2. Array Representation

Array Representation is another way to represent binary trees, especially useful when the tree is

complete (all levels are fully filled except possibly the last, which is filled from left to right).

5b. Define Threaded Binary Trees. Discuss In-threaded Binary Tree.

5c. Write the C function for the following additional list operation:

i) Inverting Singly Linked List ii) Concatenating Singly Linked list

Inverting singly linked list:

#include <stdio.h>

struct Node {
 int data;
 struct Node* next;
};

// Given the head of a list, reverse the list and return the
// head of reversed list
struct Node* reverseList(struct Node* head) {

 // Initialize three pointers: curr, prev and next
 struct Node *curr = head, *prev = NULL, *next;

 // Traverse all the nodes of Linked List
 while (curr != NULL) {

 // Store next
 next = curr->next;

 // Reverse current node's next pointer
 curr->next = prev;

 // Move pointers one position ahead
 prev = curr;
 curr = next;
 }

 // Return the head of reversed linked list
 return prev;
}

void printList(struct Node* node) {
 while (node != NULL) {
 printf(" %d", node->data);
 node = node->next;
 }
}

struct Node* createNode(int new_data) {
 struct Node* new_node
 = (struct Node*)malloc(sizeof(struct Node));
 new_node->data = new_data;
 new_node->next = NULL;
 return new_node;
}

int main() {

 // Create a hard-coded linked list:
 // 1 -> 2 -> 3 -> 4 -> 5
 struct Node* head = createNode(1);
 head->next = createNode(2);
 head->next->next = createNode(3);
 head->next->next->next = createNode(4);
 head->next->next->next->next = createNode(5);

 printf("Given Linked list:");
 printList(head);

 head = reverseList(head);

 printf("\nReversed Linked List:");
 printList(head);

 return 0;
}

Concatenating Singly Linked list:

#include <stdio.h>
#include <stdlib.h>

struct Node{

 int data;
 struct Node *next;
};

// Function to concatenate two linked lists
struct Node *concat(struct Node *head1,
 struct Node *head2) {

 if (head1 == NULL)
 return head2;

 // Find the last node of the first list
 struct Node *curr = head1;
 while (curr->next != NULL){
 curr = curr->next;
 }

 // Link the last node of the first list
 // to the head of the second list
 curr->next = head2;

 // Return the head of the concatenated list
 return head1;
}

void printList(struct Node *head) {
 struct Node *curr = head;
 while (curr != NULL){
 printf("%d ", curr->data);
 curr = curr->next;
 }
 printf("\n");
}

struct Node *createNode(int x) {
 struct Node *newNode =
 (struct Node *)malloc(sizeof(struct Node));
 newNode->data = x;
 newNode->next = NULL;
 return newNode;
}

int main() {

 // Create the first linked list: 1 -> 2 -> 3
 struct Node *head1 = createNode(1);
 head1->next = createNode(2);
 head1->next->next = createNode(3);

 // Create the second linked list: 4 -> 5
 struct Node *head2 = createNode(4);
 head2->next = createNode(5);

 struct Node *concatHead = concat(head1, head2);
 printList(concatHead);

 return 0;
}

Q.5

a) Discuss how binary trees are represented using:

i) Array

ii) Linked list

Answer:

Binary trees can be represented in two common ways: arrays and linked lists.

1. Array Representation:

 A binary tree can be stored in an array by using level-order traversal. The root node is stored

at index 1 (or 0 in some implementations), and its left and right children are stored at

positions 2i + 1 and 2i + 2, respectively.

 Advantages: Direct access to nodes, memory-efficient if the tree is complete.

 Disadvantages: Wastes space if the tree is sparse, resizing is difficult.

2. Linked List Representation:

 Each node in the tree is represented as an object containing data and pointers to left and

right children.

 Struct definition in C:

 struct Node {

 int data;

 struct Node *left, *right;

};

 Advantages: Efficient memory usage, dynamic size.

 Disadvantages: Requires extra memory for pointers, slower access compared to arrays.

b) Define Threaded binary tree. Discuss In-threaded binary tree.

Answer:

 A threaded binary tree is a type of binary tree in which null pointers are replaced with

special pointers called threads to improve traversal efficiency.

 Types of Threaded Binary Trees:

o Single Threaded: Only one pointer (left or right) is replaced with a thread.

o Double Threaded: Both left and right null pointers are replaced with threads.

 In-Threaded Binary Tree:

o In this structure, threads replace the null left pointers to point to in-order

predecessors.

o This reduces recursion overhead and speeds up traversal.

c) Write the C function for the following additional list operations:

i) Inverting a Singly Linked List

ii) Concatenating two Singly Linked Lists

Answer:

struct Node {

 int data;

 struct Node *next;

};

// Function to invert a singly linked list

struct Node* invertList(struct Node* head) {

 struct Node* prev = NULL, *curr = head, *next = NULL;

 while (curr) {

 next = curr->next;

 curr->next = prev;

 prev = curr;

 curr = next;

 }

 return prev;

}

// Function to concatenate two singly linked lists

struct Node* concatenate(struct Node* list1, struct Node* list2) {

 if (!list1) return list2;

 struct Node* temp = list1;

 while (temp->next)

 temp = temp->next;

 temp->next = list2;

 return list1;

}

Q.6

a) Discuss Inorder, Preorder, Postorder, and Level Order Traversal with suitable functions.

Answer:

 Inorder (Left, Root, Right): Used in BSTs to retrieve sorted data.

 Preorder (Root, Left, Right): Useful in tree cloning and expression evaluation.

 Postorder (Left, Right, Root): Used in deletion operations and expression trees.

 Level Order Traversal: Uses a queue to traverse nodes level by level.

void inorder(struct Node* root) {

 if (root) {

 inorder(root->left);

 printf("%d ", root->data);

 inorder(root->right);

 }

}

b) Define Threaded Binary Tree. Construct a threaded binary tree for given elements.

Answer:

 Given elements: A, B, C, D, E, F, G, H, I

 The threaded binary tree structure is constructed with proper left and right threads.

 The implementation involves linking null pointers to their respective

predecessors/successors.

c) Write a C function for the following:

i) Insert a node at the beginning of a doubly linked list.

ii) Deleting a node at the end of the doubly linked list.

struct DNode {

 int data;

 struct DNode *prev, *next;

};

struct DNode* insertAtBegin(struct DNode* head, int value) {

 struct DNode* newNode = (struct DNode*)malloc(sizeof(struct DNode));

 newNode->data = value;

 newNode->next = head;

 newNode->prev = NULL;

 if (head) head->prev = newNode;

 return newNode;

}

struct DNode* deleteAtEnd(struct DNode* head) {

 if (!head) return NULL;

 struct DNode* temp = head;

 while (temp->next)

 temp = temp->next;

 if (temp->prev) temp->prev->next = NULL;

 else head = NULL;

 free(temp);

 return head;

}

Q7 (a) Define Forest & Transform the forest into a binary tree and traverse using inorder, preorder, and

postorder traversal with an example.

 Definition of Forest (2 Marks)

 Explanation of transformation from Forest to Binary Tree (3 Marks)

 Inorder, Preorder, and Postorder traversal with an example (3 Marks)

A forest is a collection of disjoint trees. If we remove the root of a tree with multiple subtrees, it results in

a forest.

Steps to Convert a Forest into a Binary Tree:

1. Choose the leftmost node as the root.

2. Arrange each subtree by linking the first child to the left pointer and the next sibling to the

right pointer.

Example: Consider a forest with three trees:

 Tree 1: A → B, C

 Tree 2: D → E, F

 Tree 3: G → H

The corresponding binary tree representation follows:

 Left child represents the first child.

 Right child represents the next sibling.

Traversals:

 Inorder: Left → Root → Right

 Preorder: Root → Left → Right

 Postorder: Left → Right → Root

Q7 (b) Define Binary search tree. Construct a binary search tree for the given elements: 100, 85, 45, 55,

120, 20, 70, 90, 115, 65, 130, 145.

 Definition of Binary Search Tree (BST) (2 Marks)

 Explanation of BST properties (2 Marks)

 Step-by-step construction of BST with given elements (2 Marks)

A Binary Search Tree (BST) is a binary tree where for each node:

 The left subtree contains nodes with values less than the node’s value.

 The right subtree contains nodes with values greater than the node’s value.

Given elements: 100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145

Step-by-step Construction:

1. Start with 100 as the root.

2. Insert 85 to the left, 120 to the right.

3. Insert 45 to the left of 85, 115 to the left of 120.

4. Continue inserting elements while maintaining BST properties.

Q7 (c) Discuss Selection tree with an example.

 Definition of Selection Tree (2 Marks)

 Explanation with working and example (2 Marks)

 Diagram illustrating Selection Tree (2 Marks)

A Selection Tree is a complete binary tree used for sorting or merging sequences efficiently.

 Example: Used in tournament sorting.

 Structure: Leaves store input elements; internal nodes represent winners of comparisons.

 Advantages: Reduces comparisons and speeds up selection.

Q8 (a) Define Graph. Explain adjacency matrix and adjacency list representation with an example.

 Definition of Graph (2 Marks)

 Explanation of Adjacency Matrix representation (3 Marks)

 Explanation of Adjacency List representation (3 Marks)

A Graph is a data structure consisting of vertices (nodes) and edges (connections between nodes).

1. Adjacency Matrix:

 A 2D array where matrix[i][j] is 1 if there is an edge between i and j.

 Example:

 0 1 2

0 0 1 1

1 1 0 1

2 1 1 0

2. Adjacency List:

- Uses linked lists where each node stores adjacent nodes.

- **Example:**

0 → 1 → 2

1 → 0 → 2

2 → 0 → 1

Q8 (b) Define the following terminology with example: i) Digraph ii) Weighted Graph iii) Self Loop iv)

Connected Graph.

 Definition and example for Digraph (1.5 Marks)

 Definition and example for Weighted Graph (1.5 Marks)

 Definition and example for Self Loop (1.5 Marks)

 Definition and example for Connected Graph (1.5 Marks)

1. **Digraph:** A **directed graph** where edges have direction.

2. **Weighted Graph:** A graph where edges have weights (e.g., distances between cities).

3. **Self Loop:** A node with an edge to itself.

4. **Connected Graph:** Every node is reachable from any other node.

Q8 (c) Briefly explain about Elementary graph operations.

 Explanation of different elementary graph operations (3 Marks)

 Examples for each operation (3 Marks)

 1. **Adding a vertex**

 2. **Removing a vertex**

 3. **Adding an edge**

 4. **Removing an edge**

 5. **Graph traversal (DFS, BFS)**

Q.9 Scheme

Sub Question Marks CO Bloom's Level

a) Explain in detail about Static and Dynamic Hashing. 6 CO5 L2

b) What is Collision? What are the methods to resolve collision? 7 CO5 L2

c) Explain Priority queue with the help of an example. 7 CO5 L2

Solution for Q.9

(a) Static and Dynamic Hashing

Hashing is a technique used for searching and storing data efficiently. It uses a hash function to map

data to a fixed-size table known as a hash table.

 Static Hashing:

o The number of primary memory blocks remains fixed throughout.

o It consists of two types: Open Addressing (Linear Probing, Quadratic Probing, and

Double Hashing) and Chaining (Separate Chaining and Coalesced Chaining).

o Insertion and deletion operations have constant time complexity, but performance

degrades when the table gets filled.

 Dynamic Hashing:

o The size of the hash table is adjusted dynamically based on the number of elements.

o It uses techniques like Extendible Hashing and Linear Hashing.

o Helps in reducing collisions and optimizing storage space.

(b) Collision and Resolution Techniques

 Collision:

o Occurs when two different keys map to the same hash index.

o Causes performance issues and must be handled efficiently.

 Collision Resolution Techniques:

1. Separate Chaining – Each bucket maintains a linked list to store multiple values.

2. Open Addressing – Finds the next available slot using probing techniques:

 Linear Probing (checks the next immediate slot)

 Quadratic Probing (checks farther slots using quadratic increments)

 Double Hashing (uses a second hash function to resolve collisions)

3. Rehashing – Creates a new larger hash table when the load factor exceeds a

threshold.

4. Cuckoo Hashing – Uses two hash functions and stores values in alternate locations.

(c) Priority Queue with Example

 A priority queue is a special type of queue where each element is assigned a priority.

 The element with the highest priority is dequeued first, regardless of the order in which it

was enqueued.

 Types of Priority Queues:

o Max Priority Queue – Highest value has the highest priority.

o Min Priority Queue – Lowest value has the highest priority.

 Implementation Techniques:

o Array-based

o Linked List-based

o Binary Heap-based (Efficient)

o Fibonacci Heap-based (Advanced Applications)

Example: Consider a hospital where patients are treated based on severity. A priority queue helps in

managing such cases efficiently.

import heapq

pq = []

heapq.heappush(pq, (1, 'Critical Patient'))

heapq.heappush(pq, (3, 'Regular Checkup'))

heapq.heappush(pq, (2, 'Emergency'))

while pq:

 print(heapq.heappop(pq))

Q.10 Scheme

Sub Question Marks CO
Bloom's

Level

a) Define Hashing. Explain different hashing functions with suitable

examples.
12 CO5 L2

b) Write a short note on:

i) Leftist trees

ii) Optimal binary search tree 8 CO5 L3

Solution for Q.10

(a) Hashing and Hashing Functions

 Definition of Hashing:

o Hashing is a technique that converts large keys into smaller ones using a hash

function.

o Used in database indexing, caching, and search optimization.

 Types of Hash Functions:

1. Division Method – h(k) = k mod m

2. Multiplication Method – h(k) = floor(m * (k * A mod 1))

3. Folding Method – Breaks key into parts and sums them.

4. Mid-Square Method – Squares the key and extracts the middle portion.

5. Universal Hashing – Uses a randomly selected hash function from a set.

 Example:

class HashTable:

 def __init__(self, size):

 self.size = size

 self.table = [None] * size

 def insert(self, key, value):

 index = key % self.size

 self.table[index] = value

 def display(self):

 print(self.table)

ht = HashTable(10)

ht.insert(23, 'Data1')

ht.insert(56, 'Data2')

ht.display()

(b) Leftist Trees and Optimal Binary Search Trees

(i) Leftist Trees

 A leftist tree is a variant of a binary heap that favors merging operations.

 Maintains a null-path length (NPL), ensuring left child has a greater or equal NPL than the

right child.

 Applications: Efficient priority queues, dynamic merging of heaps.

Example:

 5

 / \

 8 12

 / \

 15 18

(ii) Optimal Binary Search Tree (OBST)

 A BST that minimizes the expected search cost.

 Uses dynamic programming to determine the optimal structure based on access

probabilities.

 Formula:

Cost(i, j) = min [Cost(i, k) + Cost(k+1, j) + sum(freq[i:j])]

 Example: Used in compiler design, database indexing.

	malloc()
	Q.9 Scheme

