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 Question and solution Marks  

1a  Explain the history of AI.  

1. Early Foundations (Before 1950s) 

● The idea of intelligent machines dates back to ancient myths and automata. 
● Mathematical logic (e.g., works of Aristotle, Leibniz, and Boole) laid the foundation 

for reasoning. 
● Alan Turing (1936) proposed the Turing Machine, and later (1950) introduced the 

Turing Test to define machine intelligence. 

2. Birth of AI (1950s - 1960s) 

● 1956: Dartmouth Conference – Considered the birth of AI; John McCarthy coined 
the term "Artificial Intelligence." 

● Early AI programs: 
○ Logic Theorist (1955) by Newell & Simon – First AI program to prove 

mathematical theorems. 
○ General Problem Solver (1957) – Aimed at solving any problem but had 

limitations. 
● Development of Perceptron (1958) by Frank Rosenblatt, an early neural network 

model. 

3. The Rise and Fall of AI (1960s - 1970s) 

● AI research flourished with early expert systems and symbolic reasoning. 
● However, lack of computing power and limited understanding of learning led to the 

first AI Winter (1970s), where funding and interest declined. 

4. Expert Systems & Knowledge-Based AI (1980s) 

● AI regained momentum with Expert Systems like MYCIN (medical diagnosis) and 
XCON (business applications). 

● Machine learning concepts began to develop, but AI was still rule-based. 
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● Another AI slowdown occurred due to high costs and limitations of rule-based systems. 

5. The Rise of Machine Learning & AI Boom (1990s - 2000s) 

● AI shifted from rule-based systems to probabilistic reasoning and data-driven 
approaches. 

● Breakthroughs in Machine Learning, Natural Language Processing (NLP), and 
Robotics occurred. 

● IBM’s Deep Blue (1997) defeated world chess champion Garry Kasparov. 

6. Modern AI & Deep Learning Era (2010s - Present) 

● AI exploded with advancements in Big Data, Deep Learning, and Computing 
Power. 

● Key breakthroughs: 
○ 2011: IBM Watson won Jeopardy! 
○ 2012: AlexNet revolutionized deep learning for image recognition. 
○ 2016: AlphaGo defeated world champion Go player. 
○ 2018-Present: GPT, BERT, and other AI models transformed NLP. 

● AI is now widely used in self-driving cars, medical diagnosis, virtual assistants, and 
automation. 

7. The Future of AI 

● AI research focuses on explainability, ethics, and Artificial General Intelligence 
(AGI). 

● Challenges include bias, security, and ensuring AI benefits humanity. 

AI approaches are categorized into: 

1. Thinking humanly (Cognitive modeling) 
2. Thinking rationally (Logic-based AI) 
3. Acting humanly (Turing Test approach) 
4. Acting rationally (Rational agent approach) 

 
         

1b  Define AI, Explain the foundation of AI? 
 

The study of agents that receive percepts from the environment and perform 
actions." 

This definition is based on the concept of intelligent agents, which perceive their environment 
and take actions to maximize their chances of success. 

AI is categorized into four main approaches: 

1. Thinking humanly – Understanding human cognition and replicating it. 
2. Thinking rationally – Using logic-based systems for reasoning. 
3. Acting humanly – Passing the Turing Test to exhibit human-like behavior. 
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4. Acting rationally – Creating agents that make optimal decisions. 

Foundations of AI 

The foundations of AI come from multiple disciplines, which have contributed to its 
development: 

1. Philosophy (400 BC – Present) 

● Early philosophers like Aristotle explored logical reasoning. 
● René Descartes (1637) and Leibniz (1700s) discussed mechanized thinking. 
● Alan Turing (1950) proposed the Turing Test, a key idea in AI. 

2. Mathematics (1800s – Present) 

● Boolean Algebra (George Boole, 1854) – Logical representation of reasoning. 
● Probability Theory (Bayes, 1763) – Foundation for AI decision-making. 
● Computability Theory (Turing, 1936) – Theoretical basis for algorithms. 

3. Psychology & Cognitive Science (1900s – Present) 

● Cognitive models (1950s) aimed to simulate human thought processes. 
● Neuroscience helped in developing artificial neural networks. 

4. Linguistics (1950s – Present) 

● AI uses Natural Language Processing (NLP) to understand and generate human 
language. 

● Chomsky’s Theory of Language (1957) influenced AI’s approach to syntax and 
semantics. 

5. Computer Science & Engineering (1950s – Present) 

● Development of programming languages like LISP (1958) and Prolog (1970s). 
● Evolution of machine learning algorithms and robotics. 

AI is built upon principles from logic, mathematics, psychology, and computer science. 
Russell and Norvig emphasize the rational agent approach, where AI is designed to make the 
best possible decisions in any given situation. 

 

 
 

2a Explain properties of the task environment? 
 
To design an AI system effectively,  the following properties of the task environment are 
considered:  
 
i) Observability 

10  



● Fully Observable: The agent has complete knowledge of the environment at all times 
(e.g., Chess). 

● Partially Observable: The agent has limited information about the environment (e.g., 
Poker, Self-driving cars in fog). 

ii) Deterministic vs. Stochastic 

● Deterministic: The next state of the environment is fully determined by the agent’s 
actions (e.g., Chess). 

● Stochastic: The next state is uncertain due to randomness or external factors (e.g., 
Robot navigation with unpredictable obstacles). 

iii) Episodic vs. Sequential 

● Episodic: Each decision is independent of past actions (e.g., Image recognition tasks). 
● Sequential: Past actions affect future decisions (e.g., Chess, Driving). 

iv) Static vs. Dynamic 

● Static: The environment does not change while the agent is deciding (e.g., Turn-based 
board games). 

● Dynamic: The environment changes continuously or while the agent is making a 
decision (e.g., Real-time video games, Stock market). 

v) Discrete vs. Continuous 

● Discrete: The environment has a finite number of possible states and actions (e.g., 
Chess, Tic-Tac-Toe). 

● Continuous: The environment has an infinite range of possible states and actions (e.g., 
Self-driving cars, Robotics). 

vi) Single-Agent vs. Multi-Agent 

● Single-Agent: The agent operates alone with no competitors or allies (e.g., Solving a 
puzzle). 

● Multi-Agent: The agent interacts with other agents, which can be cooperative 
(team-based) or competitive (e.g., Chess, Autonomous vehicle traffic). 

vii) Known vs. Unknown 

● Known: The agent understands the rules and model of the environment (e.g., Chess, 
where all rules are predefined). 

● Unknown: The agent must learn the environment’s rules through exploration and 
experience (e.g., Reinforcement learning in a new video game). 

 
 

2b Differentiate between simple reflex agents and model based reflex agents. 
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3a List and explain the components required to define a problem 
 
In Artificial Intelligence (AI), defining a problem properly is crucial for designing an 
intelligent agent that can find a solution efficiently. 
 

i) Initial State 

● The starting point of the problem. 
● The agent begins its search from this state. 
● Example: In a chess game, the initial state is the standard starting position of all pieces. 

ii)  Actions (Possible Moves) 

● A set of legal operations that the agent can perform. 
● These define how the agent transitions from one state to another. 
● Example: In Tic-Tac-Toe, an action is placing "X" or "O" in an empty square. 

iii) Transition Model 

● A function that describes what happens when an action is taken. 
● It determines the resulting state after performing an action. 
● Example: In a maze navigation problem, if the agent moves "UP" from (x, y), the 

new state is (x, y+1). 

iv) Goal State (Goal Test) 

● Defines the desired solution or end condition. 
● The problem is solved when the agent reaches this state. 
● Example: In pathfinding (GPS navigation), the goal state is reaching the destination 
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city. 

v) Path Cost (Cost Function) 

● A numeric value that measures the efficiency of a solution. 
● Used to evaluate and compare different paths to the goal. 
● Example: In Google Maps, the path cost could be distance, time, or toll fees. 

Example: Defining the "8-Puzzle" Problem 

1. Initial State: A shuffled board configuration. 
2. Actions: Moving the empty tile up, down, left, or right. 
3. Transition Model: Defines how the board changes after a move. 
4. Goal State: The tiles are arranged in numerical order. 
5. Path Cost: The number of moves taken to reach the goal. 

 

3b Explain the goal formulation and problem formulation with examples 
 
In AI, goal formulation and problem formulation are the first steps in designing an intelligent 
agent to solve a given task. 
 

Goal Formulation 
● The goal is the desired outcome or end state that an agent wants to achieve. 
● Goals are typically defined based on the agent’s perception of the environment. 
● The goal must be precise, achievable, and measurable. 

Example: Self-Driving Car 

● Goal: Reach the destination safely while following traffic rules and optimizing travel 
time. 

● The AI system determines actions (speed, lane changes, stops) to achieve this goal. 

 
 

Problem Formulation 
● Once the goal is defined, the agent must define a problem in a way that it can be 

solved systematically. 
● Problem formulation involves: 

1. Defining the initial state (Where is the agent now?) 
2. Listing possible actions (What actions can the agent take?) 
3. Describing the transition model (What happens when an action is 

performed?) 
4. Defining the goal state (What does success look like?) 
5. Setting a path cost function (What is the cost of each action?) 
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Example: Self-Driving Car (Problem Formulation) 

1. Initial State: The car is at a starting location (GPS coordinates). 
2. Actions: Move forward, turn left, turn right, stop, accelerate, etc. 
3. Transition Model: If the car moves forward at speed X, it reaches a new position Y. 
4. Goal State: The car reaches the destination safely. 
5. Path Cost: Minimize time, avoid accidents, and follow traffic rules. 

 
 

 

4a Explain breadth first search and depth first search with an example 
 
BFS and DFS are two fundamental uninformed search algorithms used in AI to explore and 
find solutions in state spaces (graphs or trees). 
 

Breadth-First Search (BFS) 

Definition: 

● BFS explores all nodes at the current depth level before moving to the next level. 
● It uses a queue (FIFO - First In, First Out) data structure. 

Algorithm Steps: 

1. Start from the initial node (root). 
2. Explore all immediate child nodes. 
3. Move to the next level and repeat. 
4. Continue until the goal node is found or all nodes are explored. 

Example: BFS on a Graph 

 

 

  



Consider the following graph: 
       A 
      / \ 
     B   C 
    / \   \ 
   D   E   F 
 

BFS Traversal Order: 

1. Start from A → [A] 
2. Visit its children: B, C → [A, B, C] 
3. Visit B's children: D, E → [A, B, C, D, E] 
4. Visit C's child: F → [A, B, C, D, E, F] 

Output Order: A → B → C → D → E → F 
 

Pros & Cons of BFS: 

 Guaranteed to find the shortest path (if all edges have equal weight). 
Consumes more memory as it stores all nodes at the current level before moving deeper. 

 
 

4b Illustrate the different methods of evaluating an algorithm’s performance 
 
Evaluating an algorithm's performance is essential to determine its efficiency, scalability, and 
suitability for a given problem. The following are the key methods used to evaluate an 
algorithm: 
 

Time Complexity Analysis 
● Measures how the runtime of an algorithm grows with input size (n). 
● Expressed using Big-O Notation (e.g., O(n), O(log n), O(n²)). 
● Helps in comparing algorithms based on their efficiency in execution time. 

Example: Sorting Algorithms 

● Bubble Sort: O(n²) (slow for large n) 
● Merge Sort: O(n log n) (better for large n) 

Use case: When selecting a sorting or searching algorithm for large datasets. 

 

 

  



Completeness 
Definition: 

● Determines whether an algorithm is guaranteed to find a solution if one exists. 

Example: 

● BFS: Complete (always finds a solution if one exists). 
● DFS: Not necessarily complete (may get stuck in an infinite branch). 

Use case: Ensuring an algorithm doesn’t miss a valid solution. 

 

Space Complexity Analysis 
Definition: 

● Evaluates the amount of memory required by an algorithm. 
● Includes memory for input, auxiliary variables, recursion stack, and output. 
● Expressed in Big-O notation (e.g., O(n), O(1)). 

Example: 

● BFS: O(b^d) (stores all nodes at the current level). 
● DFS: O(d) (stores only the current path). 

Use case: Choosing between search algorithms for memory-limited environments. 

 

 

Space Complexity Analysis 
● Evaluates the amount of memory required by an algorithm. 
● Includes memory for input, auxiliary variables, recursion stack, and output. 
● Expressed in Big-O notation (e.g., O(n), O(1)). 

Example: Recursive vs. Iterative Fibonacci 

● Recursive Fibonacci: O(n) space (due to function calls in recursion stack). 
● Iterative Fibonacci: O(1) space (uses only a few variables). 

Use case: When designing memory-efficient applications (e.g., embedded systems). 



Optimality 
Definition: 

● Checks whether an algorithm always finds the best (shortest or least costly) solution. 

Example: 

● BFS (in an unweighted graph): Optimal (finds the shortest path). 
● DFS: Not optimal (may find a suboptimal solution first). 

 Use case: Choosing between algorithms when an optimal solution is required. 

 

Empirical Performance Analysis 
Definition: 

● Measures real-world execution time by running the algorithm on actual datasets. 
● Uses metrics like: 

○ CPU Time 
○ Memory Usage 
○ Cache Efficiency 

Example: 

● Running A search* vs. Dijkstra’s Algorithm on different graph sizes. 

 Use case: Testing algorithms in real-time AI applications. 

 

 

 

 

5a Describe greedy best search as an informed search strategy 
 

 Introduction to Informed Search 

An informed search strategy uses additional knowledge (heuristics) to guide the search toward 
the goal more efficiently than uninformed methods like BFS or DFS. 

Greedy Best-First Search (GBFS) is a heuristic-based search algorithm that selects the next 
node based on its estimated cost to the goal. 

  



Definition of Greedy Best-First Search 

● GBFS expands the node that appears to be closest to the goal based on a heuristic 
function. 

● The heuristic function h(n) estimates the cost from node n to the goal. 
● Unlike A search*, GBFS does not consider the cost from the start node, only the 

estimated distance to the goal. 

Evaluation Function: 

f(n)=h(n)f(n) = h(n)f(n)=h(n) 

where: 

● h(n)h(n)h(n) = estimated cost from node n to the goal. 

Greedy Best-First Search prioritizes low heuristic values. 

 

Algorithm Steps 

1. Initialize an empty priority queue (min-heap). 
2. Insert the starting node into the queue. 
3. While the queue is not empty: 

○ Remove the node with the lowest heuristic value h(n). 
○ If this node is the goal, return the solution. 
○ Otherwise, expand its neighbors and add them to the queue. 

4. Repeat until a solution is found or the search space is exhausted. 

 

 

Example: Pathfinding in a Graph 

Consider the following graph, where numbers represent h(n) values (estimated cost to goal 
G): 

          A (10) 

    /   \ 

  B(5)   C(4) 

  |  \     | 

 D(7) E(2) F(0) [Goal] 

 

GBFS Traversal (Starting from A, Goal = F): 



1. Start from A (h=10) → Expand B (h=5) and C (h=4). 
2. Choose C (h=4) (smallest h-value). 
3. Expand F (h=0) → Goal reached! 

Path found: A → C → F 

 Issue: It does not guarantee the shortest path (e.g., A → B → E → F might be better). 

 

 

 

 

Applications of Greedy Best-First Search 

● Pathfinding algorithms (Google Maps, GPS navigation). 
● AI in games (NPC movement, shortest enemy paths). 
● Robotics (navigation and obstacle avoidance). 
● Machine Learning (feature selection in optimization problems). 

 



 

 

 

 

 

5b Explain knowledge based agent with a generic knowledge based agent program 
 

A Knowledge-Based Agent (KBA) is an intelligent agent that: 

● Uses knowledge representation to model the world. 
● Uses inference mechanisms to make decisions. 
● Can update its knowledge base dynamically. 

KBAs work by perceiving the environment, reasoning based on stored knowledge, and 
taking actions accordingly. 

 

Components of a Knowledge-Based Agent 
A KBA consists of the following: 

1. Knowledge Base (KB) 
○ Stores facts, rules, and heuristics about the world. 
○ Expressed using First-Order Logic (FOL), Propositional Logic, or 

semantic networks. 
2. Inference Engine 

○ Uses logical deduction (e.g., Modus Ponens) to infer new facts. 
○ Example: If "It is raining" → "Carry an umbrella." 

3. Perception Module 
○ Takes input from sensors (e.g., camera, temperature sensor, user input). 
○ Updates KB with newly perceived facts. 

4. Action Selection Module 
○ Decides next action based on knowledge and inference. 

5. Learning Mechanism (Optional) 
○ Improves KB over time by learning from past experiences. 

  



Working Principle of a Knowledge-Based Agent 
A KBA follows a cycle of reasoning and action: 

1. Perceive the environment. 
2. Update KB with new information. 
3. Use inference rules to derive conclusions. 
4. Choose an action based on inferred knowledge. 
5. Execute the action and update KB accordingly. 

 

 

Real-World Applications of KBAs 
● Chatbots (e.g., AI assistants using knowledge bases). 
● Medical Diagnosis Systems (e.g., expert systems like MYCIN). 
● Game AI (e.g., NPC decision-making using knowledge). 
● Automated Theorem Proving (e.g., Prolog-based inference systems). 
● Recommendation Systems (e.g., knowledge-driven movie or book recommendations). 

 

6a Describe syntax and semantics with respect to propositional logic   

6b Explain Wumpus World with respect to Artificial Intelligence 
 

Wumpus world: 

The Wumpus world is a simple world example to illustrate the worth of a knowledge-based 
agent and to represent knowledge representation. It was inspired by a video game Hunt the 
Wumpus by Gregory Yob in 1973. 

The Wumpus world is a cave which has 4/4 rooms connected with passageways. So there are 
total 16 rooms which are connected with each other. We have a knowledge-based agent who will 
go forward in this world. The cave has a room with a beast which is called Wumpus, who eats 
anyone who enters the room. The Wumpus can be shot by the agent, but the agent has a single 
arrow. In the Wumpus world, there are some Pits rooms which are bottomless, and if agent falls 
in Pits, then he will be stuck there forever. The exciting thing with this cave is that in one room 

  



there is a possibility of finding a heap of gold. So the agent goal is to find the gold and climb out 
the cave without fallen into Pits or eaten by Wumpus. The agent will get a reward if he comes 
out with gold, and he will get a penalty if eaten by Wumpus or falls in the pit. 

Following is a sample diagram for representing the Wumpus world. It is showing some rooms 
with Pits, one room with Wumpus and one agent at (1, 1) square location of the world. 

 
 

There are also some components which can help the agent to navigate the cave. These 
components are given as follows: 

1.        The rooms adjacent to the Wumpus room are smelly, so that it would have some stench. 

2.        The room adjacent to PITs has a breeze, so if the agent reaches near to PIT, then he will 
perceive the breeze. 

3.        There will be glitter in the room if and only if the room has gold. 

4.        The Wumpus can be killed by the agent if the agent is facing to it, and Wumpus will emit a 
horrible scream which can be heard anywhere in the cave. 
 

7a What is machine learning? Explain with specific examples 
 
A computer program is said to learn from experience (E) with respect to some class of tasks (T) 
and performance measure (P), if its performance at tasks in T, as measured by P, improves with 
experience E. 
 
Machine Learning is about improving performance (P) on a task (T) based on experience 
(E). 

  



 
 

Example 1: Spam Email Detection 

● Task (T): Classifying emails as spam or not spam. 
● Experience (E): Analyzing a dataset of emails labeled as spam or not spam. 
● Performance (P): Accuracy in correctly identifying spam emails. 
● Learning Process: 

○ The system learns patterns from labeled spam emails. 
○ It identifies keywords (e.g., "free money", "lottery"), senders, and 

phrases that indicate spam. 
○ Over time, as it processes more emails, it improves in identifying spam. 

Example 2: Handwriting Recognition (Digit Classification) 

● Task (T): Recognizing handwritten digits (0-9) from images. 
● Experience (E): Training on a dataset like MNIST (handwritten digit dataset). 
● Performance (P): Accuracy in predicting correct digits. 
● Learning Process: 

○ The system extracts features (edges, curves, shapes) from images. 
○ Uses a model (e.g., Neural Networks, SVM) to classify digits. 
○ With more training data, the accuracy improves. 

A checkers learning problem: I Task T: playing checkers I Performance measure P: 
percent of games won in the world tournament I Training experience E: games played 
against itself 

 

7b Explain perspectives and issues with machine learning 
 
Machine Learning (ML) is a field of Artificial Intelligence (AI) that enables computers to learn 
from data and improve performance over time without explicit programming. However, 
ML comes with multiple perspectives and challenges. 
 
Perspectives: 
 The evolution of ML algorithms, such as deep learning and reinforcement learning, has 
led to state-of-the-art performance in tasks like image recognition, speech processing, and 
game-playing.  
 
Automating decision-making processes 
 
 The ability to process large datasets allows ML systems to uncover patterns and insights 
that are otherwise impossible to detect manually, enabling data-driven decision-making. 
 
 
Issues in machine learning 
 
 It involves searching a very large space of possible hypotheses to determine one that best 
fits the observed data and any prior knowledge held by the learner.  
 
Data plays a significant role in the machine learning process. One of the significant issues 
that machine learning professionals face is the absence of good quality data.  

  



 
Many ML models, especially deep learning systems, function as black boxes, making it 
difficult to interpret how decisions are made. This lack of transparency raises concerns in 
high-stakes applications like healthcare and law.  
 
ML models can overfit training data, failing to generalize to unseen data. Striking the 
right balance between model complexity and performance is essential.  
 

7c Explain types of machine learning system 
 
Classification based on Whether or not they are trained with human supervision (supervised, 
unsuper- vised, semi supervised, and Reinforcement Learning)  
 
Whether or not they can learn incrementally on the fly (online versus batch learning) 
 
 Whether they work by simply comparing new data points to known data points, or instead 
detect patterns in the training data and build a predictive model. 
 
 Supervised/unsupervised learning  
Batch or online based learning Model  
instance based learning 

  

8a  Describe the main challenges of Machine learning 

The quality of the learning systems depends on the quality of data. Some of the challenges 
with this are: 

◦Problems: Problems have to be well posed. 

◦Insufficient Quantity of Training Data 

◦Nonrepresentative Training Data 

◦Poor-Quality Data 

◦Irrelevant Features 

◦Overfitting the Training Data 

◦High computational power required 

◦Complexity of algorithms 

◦Bias/variance 
 
 
 

  
 
 
 

8b Explain (i) Find S Algorithm (ii) Candidate Elimination Algorithm 
 
The S algorithm, also known as the Find-S algorithm, is a machine learning algorithm that seeks 
to find a maximally specific hypothesis based on labeled training data. It is a fundamental 
technique in machine learning that aims to discover a generalized hypothesis from a given set of 
training data. It is commonly used in concept learning tasks, where the goal is to learn a concept 
or rule from a set of positive and negative examples. The algorithm starts with the most specific 
hypothesis and generalizes it by incorporating positive examples. It ignores negative examples 
during the learning process 

  



workings of the algorithm: 
Initialization − The algorithm starts with the most specific hypothesis, denoted as h. This initial 

hypothesis is the most restrictive concept and typically assumes no positive examples. It may be 

represented as h = <∅, ∅, ..., ∅>, where ∅ denotes "don't care" or "unknown" values for each 

attribute. 

Iterative Process − The algorithm iterates through each training example and refines the 

hypothesis based on whether the example is positive or negative.  

For each positive training example (an example labeled as the target class), the algorithm 

updates the hypothesis by generalizing it to include the attributes of the example. The 

hypothesis becomes more general as it covers more positive examples.  

For each negative training example (an example labeled as a non-target class), the algorithm 

ignores it as the hypothesis should not cover negative examples. The hypothesis remains 

unchanged for negative examples. 

Generalization − After processing all the training examples, the algorithm produces a final 

hypothesis that covers all positive examples while excluding negative examples. This final 

hypothesis represents the generalized concept that the algorithm has learned from the training 

data. 

 

Candidate elimination Algorithm:  

This algorithm computes the version space by the combination of two cases  

1.Specific to general learning – Generalize S to include the positive examples 

2.General to specific learning – Specialize G to exclude negative examples. 

The algorithm defines two boundaries: 

1.General boundary: A set of hypotheses that are most general 

2.Specific boundary: A set of hypothesis that are the most specific 

The algorithm works as follows: 



1. Initialization: 

● Initialize the specific hypothesis (S) to the first positive example. 

● Initialize the general hypothesis (G) to the most general hypothesis (all attributes 

are “?”). 

2. Iterate through examples: 

● For each positive example, generalize the specific hypothesis to cover the 

example. 

● For each negative example, specialize the general hypotheses to exclude the 

example. 

3. Refinement: 

● Remove hypotheses from G that are more specific than S. 

 

 
 

9a Explain working with real data and get the data. 
 
When you are learning about Machine Learning it is best to actually experiment with 
real-world data, not just artificial datasets. Fortunately, there are thousands of open 
datasets to choose from, ranging across all sorts of domains. 
Popular open data repositories: 
—UC Irvine Machine Learning Repository 
—Kaggle datasets 
—Amazon’s AWS datasets 
• Meta portals (they list open data repositories): 
—http://dataportals.org/ 
—http://opendatamonitor.eu/ 
—http://quandl.com/ 
• Other pages listing many popular open data repositories: 
—Wikipedia’s list of Machine Learning datasets 
—Quora.com question 

  



—Datasets subreddit 
 
Real data tends to be noisy, complex, and full of nuances, and therefore introduces a lot of 
obstacles between you and the question you are trying to answer as a data scientist. Real data 
provides a more accurate basis for building models and drawing conclusions. Models trained on 
real data are more likely to generalize well to unseen data because they have been exposed to 
the same types of variations and uncertainties present in the real world.Whereas the models 
trained on artificial datasets will stay within their own walls of ignorance and will perform 
poorly for the outside world. 
 
In typical environments your data would be available in a relational database (or 
some other common datastore) and spread across multiple tables/documents/files. To 
access it, you would first need to get your credentials and access authorizations,10 and 
familiarize yourself with the data schema.  
 
We can take a look at the data after fetching the data using head() method of Pandas. 
 
The info() method is useful to get a quick description of the data, in particular the 
total number of rows, and each attribute’s type and number of non-null values 
The describe() method shows a summary of the 
numerical attributes . 
Another quick way to get a feel of the type of data you are dealing with is to plot a 
histogram for each numerical attribute. A histogram shows the number of instances 
(on the vertical axis) that have a given value range (on the horizontal axis). You can 
either plot this one attribute at a time, or you can call the hist() method on the 
whole dataset, and it will plot a histogram for each numerical attribute. 

9b Write a note on Launch, Monitor and Maintain your system. 
 
need to write monitoring code to check your system’s live performance at 
regular intervals and trigger alerts when it drops. This is important to catch not only 
sudden breakage, but also performance degradation. This is quite common because 
models tend to “rot” as data evolves over time, unless the models are regularly trained 
on fresh data. 
Evaluating your system’s performance will require sampling the system’s predictions 
and evaluating them. This will generally require a human analysis. These analysts 
may be field experts, or workers on a crowdsourcing platform.  You should also make sure you 
evaluate the system’s input data quality. Sometimes 
performance will degrade slightly because of a poor quality signal (e.g., a malfunctioning 
sensor sending random values, or another team’s output becoming stale), but 
it may take a while before your system’s performance degrades enough to trigger an 
alert. If you monitor your system’s inputs, you may catch this earlier. Monitoring the 
inputs is particularly important for online learning systems. 
Finally, you will generally want to train your models on a regular basis using fresh 
data. You should automate this process as much as possible. If you don’t, you are very 
likely to refresh your model only every six months (at best), and your system’s performance 
may fluctuate severely over time. If your system is an online learning system, 
you should make sure you save snapshots of its state at regular intervals so you can 
easily roll back to a previously working state. 
 
 

  

10 a Describe the steps involved in preparing the data for the machine learning model. 
 
Instead of just preparing data manually, we should write functions to do that, for several good 

  



reasons: 
• This will allow you to reproduce these transformations easily on any dataset (e.g., 
the next time you get a fresh dataset). 
• You will gradually build a library of transformation functions that you can reuse 
in future projects. 
• You can use these functions in your live system to transform the new data before 
feeding it to your algorithms. 
• This will make it possible for you to easily try various transformations and see 
which combination of transformations works best. 
 
Data Cleaning 
Most Machine Learning algorithms cannot work with missing features.. To handle missing data 
we have  three options: 
• Get rid of the corresponding districts. 
• Get rid of the whole attribute. 
• Set the values to some value (zero, the mean, the median, etc.). 
We can accomplish these easily using DataFrame’s dropna(), drop(), and fillna() 
methods. 
Handling Text and Categorical Attributes: 
Most Machine Learning algorithms prefer to work with numbers anyway, so to  convert 
these categories from text to numbers. For this, we can use Scikit-Learn’s Ordina 
lEncoder class 
 
 
 

10 b Explain MINST with respect to machine learning. 
MINST  is a set of 70,000 small images of digits handwritten by high school students and 
employees of the US Census Bureau. Each image is labeled with the digit it represents. This set 
has been studied so much that it is often called the “Hello World” of Machine Learning: 
whenever people come up with a new classification algorithm, they are curious to see how it 
will perform on MNIST. Whenever someone learns Machine Learning, sooner or 
later they tackle MNIST. There are 70,000 images, and each image has 784 features. This is 
because each image is 28×28 pixels, and each feature simply represents one pixel’s intensity, 
from 0 (white) to 255 (black). 
The MNIST dataset is actually already split into a training set (the first 60,000 
images) and a test set (the last 10,000 images): 
The training set is already shuffled for us, which is good as this guarantees that all 
cross-validation folds will be similar (you don’t want one fold to be missing some digits). 
Moreover, some learning algorithms are sensitive to the order of the training instances, and they 
perform poorly if they get many similar instances in a row. Shuffling 
the dataset ensures that this won’t happen. 
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