
 

 

 



Q.1:  

a) With a neat diagram, explain the connection between the Processor and memory 

Sol: 

 

 

 

There are basically three interfacing buses between the processor and Memory namely: 

a) Address Bus 

b) Data Bus 

c) Control Bus 

Address bus is used to carry the address information from the Processor to the Memory Chip. It 

is basically a unidirectional bus that is connected to the Memory Address Register (MAR) in the 

Processor. In case the process requires to read or write the data into Memory, the address is 

loaded into the MAR register, which is connected to the Address Bus. Thus any address that is 

loaded into the MAR register is carried forward to the Memory Chip through the Address Bus. 



Control Bus: The processor further intimates the memory chip about the nature of operation 

associated by using the Control Bus. Processor conveys whether a  READ or WRITE operation is 

being processed  to the memory chip using the control bus. Control Bus is bi-directional in nature 

since, this bus is used to exchange all the control information between the Processor and 

Memory to facilitate proper handshaking required to execute the memory access by the 

Processor. 

Data Bus: Data Bus carries the data information between the processor and Memory. In case of a 

read operation being performed by the processor, the memory places the data from the 

addressed location on to the Data bus, which transfers the same to the Processor’s Memory Data 

Register (MDR). Simiularly, in case if the processor intends to write the data into the memory, 

data is loaded on to the Data bus from the Memory Data Register (MDR) present in the 

processor. Hence Data bus is bi-directional in nature. 

 

b) Write the Difference between Little Endian and Big Endian memory assignments 

Sol: 

Big-Endian and Little-Endian Assignments 
 The name big-endian is used when the lower byte addresses are used for the most 

significant bytes (the leftmost bytes) of the word. The little-endian is used for the opposite 

ordering, when the lower byte addresses for the less significant bytes (the rightmost bytes) of 

the word. In both cases, byte addresses 0,4,8, …, are taken as the address for the successive 

words in the memory and are the addresses used when specifying the memory read and write 

operation for the words. The two ways that the byte addresses can be used across the words as 

shown in Fig 1.11. 

 
Fig 1.11:  a) Big-endian assignment                     b) Little-endian assignment 

 



 

c) Short Note on Basic Performance Equation: 

Sol: 

 

Basic Performance Equation  

 Let 𝑇 be the processor time required to execute a program that has been prepared by 

some high level language. The compiler generates machine level object program that 

corresponds to source program. Assume that complete execution of the program requires 

the execution of 𝑁 machine language instructions. Suppose that the average number of 

basic steps needed to execute one machine instruction is 𝑆, where each basic step is 

completed in one clock cycle. If the clock rate is 𝑅 cycles per second, the program execution 

time is given by basic performance equation.  

𝑇 =
𝑁 × 𝑆

𝑅
 

 To achieve high performance, the value of 𝑇 must be reduced which can be done by 

reducing 𝑁 and 𝑆, and increasing 𝑅. The value of 𝑁 is reduced if the source program is 

compiled in fewer machine instructions. The value of 𝑆 is reduced if instructions have a 

smaller number of basic steps to perform or if the execution of instructions are overlapped.  

Using a higher-frequency clock increases the value of 𝑅 which means the time required to 

complete a basic execution step is reduced.  

 

Q-2: 

a) Describe the concept of branching with an example program of instruction execution 

Sol:  

Branching  

  

Consider a task of adding a list of  𝑛  numbers. The address of the memory locations 

containing the 𝑛 numbers are given as 𝑁𝑈𝑀1, 𝑁𝑈𝑀2, . . . . . . . . 𝑁𝑈𝑀𝑛 and a separate 𝐴𝐷𝐷 

instruction is used to add each number to the contents of the register 𝑅0. After all numbers 

have been added, the result is placed in the memory location 𝑆𝑈𝑀.                                                          

 

 Instead of using a long list of 𝐴𝑑𝑑 instructions, it is possible to place a single 𝐴𝑑𝑑 

instruction in a program loop as shown in Fig 1.13. The loop is a straight line sequence of 

instructions executed as many times as needed. It starts at location LOOP and ends at the 

instruction Branch>0. 𝑅1 is used as a counter to determine the number of times loop is 

executed and holds the contents of the memory location 𝑁 which contains the number of 

entries in the list 𝑛.  Then, within the body of loop, the instruction 

𝐷𝑒𝑐𝑟𝑒𝑎𝑚𝑒𝑛𝑡    𝑅1 

                            



 Execution of the loop is repeated as long as the result of the decrement operation 

is greater than zero. 

 

                                                             

                                                           𝑀𝑜𝑣𝑒       𝑁, 𝑅1 

                                                            𝐶𝑙𝑒𝑎𝑟         𝑅0   

                                                     

                                                        Determine the address of  

                                                        “Next” number and add  

                                                        “Next” number to R0 

  

                                                       

                                                             𝐷𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡    𝑅1 

 

                                                           𝐵𝑟𝑎𝑛𝑐ℎ > 0   LOOP 

 

                                                           𝑀𝑜𝑣𝑒          𝑅𝑜, 𝑆𝑈𝑀 

 

•  

 

•  

 

                                     SUM 

                                      

                                     N                                  𝑛 

 

                                     NUM1 

 

                                    NUM2 

•  

•  

                                    NUMn                                               

 

 

Fig 1.13: Using a loop to add 𝑛 numbers 

 

 A conditional branch instruction causes a branch only if a specified condition is 

satisfied. If the condition is not satisfied, the PC is incremented in a normal way and the 

next instruction in sequential address order is fetched and executed.   

 



 

 

 

b) Represent the following decimal values  as signed 7-bit numbers using Sign and magnitude, 

signed 1’s compliment and signed 2’d complimentformats: 

-55, +51, 8, -27, -39, +43, -10, 62 

 Sol: 

Sign and Magnitude Representation 

 1. -55 

• Sign Bit = 1 (Negative) 

• Magnitude = 55 in binary → 0110111 

• Sign and Magnitude Representation = 10110111 

 

2. +51 

• Sign Bit = 0 (Positive) 

• Magnitude = 51 in binary → 0110011 

• Sign and Magnitude Representation = 00110011 

 

3. +8 

• Sign Bit = 0 (Positive) 

• Magnitude = 8 in binary → 0001000 

• Sign and Magnitude Representation = 00001000 

 

4. -27 

• Sign Bit = 1 (Negative) 

• Magnitude = 27 in binary → 0011011 

• Sign and Magnitude Representation = 1011011 

 

5. -39 

• Sign Bit = 1 (Negative) 

• Magnitude = 39 in binary → 0100111 

• Sign and Magnitude Representation = 10100111 



 

6. +43 

• Sign Bit = 0 (Positive) 

• Magnitude = 43 in binary → 0101011 

• Sign and Magnitude Representation = 00101011 

 

7. -10 

• Sign Bit = 1 (Negative) 

• Magnitude = 10 in binary → 0001010 

• Sign and Magnitude Representation = 10001010 

 

8. +62 

• Sign Bit = 0 (Positive) 

• Magnitude = 62 in binary → 0111110 

• Sign and Magnitude Representation = 00111110 

 

  

 

c) Gesg 

d)  

 

signed 1’s compliment 

          1. -55 

• Magnitude: 55 → 0110111 

• 1's Complement: Invert all bits → 1001000 

• 1's Complement Representation = 11001000 

 

2. +51 

• Magnitude: 51 → 0110011 

• Positive Number (No change) → 0110011 

• 1's Complement Representation = 00110011 



 

3. +8 

• Magnitude: 8 → 0001000 

• Positive Number (No change) → 0001000 

• 1's Complement Representation = 00001000 

 

4. -27 

• Magnitude: 27 → 0011011 

• 1's Complement: Invert all bits → 1100100 

• 1's Complement Representation = 11100100 

 

5. -39 

• Magnitude: 39 → 0100111 

• 1's Complement: Invert all bits → 1011000 

• 1's Complement Representation = 11011000 

 

6. +43 

• Magnitude: 43 → 0101011 

• Positive Number (No change) → 0101011 

• 1's Complement Representation = 00101011 

 

7. -10 

• Magnitude: 10 → 0001010 

• 1's Complement: Invert all bits → 1110101 

• 1's Complement Representation = 11110101 

 

8. +62 

• Magnitude: 62 → 0111110 

• Positive Number (No change) → 0111110 

• 1's Complement Representation = 00111110 

 



2’s Compliment Representation:: 

1. -55 

• Magnitude: 55 → 0110111 

• 1's Complement: Invert all bits → 1001000 

• Add 1 → 1001000 + 1 = 1001001 

• 2's Complement Representation = 1001001 

 

2. +51 

• Magnitude: 51 → 0110011 

• Positive Number (No change) → 0110011 

• 2's Complement Representation = 0110011 

 

3. +8 

• Magnitude: 8 → 0001000 

• Positive Number (No change) → 0001000 

• 2's Complement Representation = 0001000 

 

4. -27 

• Magnitude: 27 → 0011011 

• 1's Complement: Invert all bits → 1100100 

• Add 1 → 1100100 + 1 = 1100101 

• 2's Complement Representation = 1100101 

 

5. -39 

• Magnitude: 39 → 0100111 

• 1's Complement: Invert all bits → 1011000 

• Add 1 → 1011000 + 1 = 1011001 

• 2's Complement Representation = 1011001 

 

6. +43 

• Magnitude: 43 → 0101011 



• Positive Number (No change) → 0101011 

• 2's Complement Representation = 0101011 

 

7. -10 

• Magnitude: 10 → 0001010 

• 1's Complement: Invert all bits → 1110101 

• Add 1 → 1110101 + 1 = 1110110 

• 2's Complement Representation = 1110110 

 

8. +62 

• Magnitude: 62 → 0111110 

• Positive Number (No change) → 0111110 

• 2's Complement Representation = 0111110 

 

 

c. Write a short note on memory Operations 

Sol: 

Memory Locations and Addresses 
Number and character operands as well as instructions are stored in the memory of a 

computer. The memory consists of millions of storage cells, each of which can store bit of 

information having a value 0 or 1. The memory is organized so that a group of n bits can be 

stored or retrieved in a single basic operation. Each group of n bits is referred to as word of 

information, and n is called word length. The memory of a computer can be systematically 

represented as collection of words as shown in Fig 1.10. 



 

 

Accessing the memory to store or retrieve a single item of information, either a byte or word, 

requires distinct names or addresses for each item location. The 2𝑘  addresses constitute the 

address space of the computer, and the memory can have up to 2𝑘 addressable locations. For 

example, a 24 bit address generates an address space of 224 (16,777,216) locations. 

 A byte is always 8 bits but the word length typically ranges from 16 to 64 bits. The 

successive addresses refer to successive byte locations in the memory. The term byte-

addressable memory is used for this assignment. Byte locations of addresses 0,1,2 …Thus, if 

word length of the machine is 32 bits, successive words are located at addresses 0,4,8, …, with 

each word consisting of four bytes. 

 

Memory Operations 
 Both program instructions and data operands are stored in the memory. To execute an 

instruction, the processor control circuits must cause the word (or words) containing the 

instructions to be transferred from the memory to the processor. Operands and results must also 

be moved between memory and processor. Thus the two basic operations involving memory 

are needed, namely, Load (or Read or Fetch) and Store (or Write). 

 The Load operation transfers a copy of the contents of a specified memory location to 

the processor. The memory content remains unchanged. The Store operation transfers an item 

of information from the processor to a specific memory location destroying the contents of that 

location.  

 



Q3. 

a. What is an addressing mode? Explain any four Addressing modes with suitable 

examples. 

 

Addressing Modes 

 The different ways in which the location of an operand is specified in an instruction is 

known as addressing modes. Variables and constants are the simplest data types. In assembly 

language, a variable is represented by allocating a register or memory location to hold its value. 

Thus, the value can be changed as needed using appropriate instructions. 

• Register mode – The operand is the contents of a processor register; the name of the     

register is given in the instruction. 

• Absolute mode – The operand is in a memory location; the address of this location is 

given explicitly in the instruction. 

The instruction      𝑀𝑜𝑣𝑒       𝐿𝑂𝐶, 𝑅2      

uses two modes. Processor registers are temporary storage locations where data in a register is 

accessed using the Register mode. Address and data constants can be represented in assembly 

language using the Immediate mode addressing where the operand is given explicitly in the 

instruction. For example, the instruction 

𝑀𝑜𝑣𝑒    200𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 , 𝑅0 

Places the value 200 in register 𝑅0. A common convention is to use # in front of the immediate 

value to indicate that this value is to be used as an immediate operand. Hence we can write the 

instruction above in the form 

𝑀𝑜𝑣𝑒    #200, 𝑅0 

Constant values are used frequently in high-level language programs. The statements 𝐴 = 𝐵 +
6 contains the constant 6. Assuming that 𝐴 and 𝐵 have been declared as variables and may be 

accessed using Absolute mode.  

𝑀𝑜𝑣𝑒   𝐵, 𝑅1 

𝐴𝑑𝑑   #6, 𝑅1 

𝑀𝑜𝑣𝑒   𝑅1, 𝐴 
 

 

Indirection and Pointers 

 In indirect mode addressing, the instruction does not give the operand or the address 

explicitly. Instead it provides information from which the memory address of the operand can 

be determined. This address is referred to as effective address (EA) of the operand. 

 

Indirect mode – The effective address of the operand is the contents of a register or memory 

location whose address appears in the instruction. 

 



 To execute the 𝐴𝑑𝑑 instruction in Fig 2.1a, the processor uses the value 𝐵, which is in 

the register 𝑅1, as the effective address of the operand. It requests a read operation from the 

memory to read the contents of location 𝐵. The value read is the desired operand, which the 

processor adds to the contents of register 𝑅0. Indirect addressing through a memory location 

is also possible as shown in Fig 2.1b. In this case, the processor first reads the contents of 

memory location 𝐴, then request the second read operation using the value 𝐵 as a address to 

obtain the operand.  

       

 
 

a) Through a general purpose register                 b) Through a memory location 

Fig 2.1: Indirect addressing 

 

 The register or the memory location that contains the address of the operand is called a 

pointer.  

 

 

Indexing and Arrays  

 This addressing mode provides flexibility for accessing operands and is useful in 

dealing with lists and arrays.  

 

    Index mode – The effective address of the operand is generated by adding a constant value                                  

to the contents of a register. This register is referred to as index register.  

 

We indicate the Index mode symbolically as 𝑋(𝑅𝑖) where 𝑋 denotes the constant 

value contained in the instruction and 𝑅𝑖 is the name of the register involved. The effective 

address of the operand is given by 

𝐸𝐴 = 𝑋 + [𝑅𝑖] 
 

Fig 2.2 illustrates two ways of using Index mode. In Fig 2.2a, the index register 𝑅1 

contains the address of the memory location and the value 𝑋 defines an offset or displacement 

from this address to the location where the operand is found.  

 



 
 

Fig 2.2 a: Offset is given as a constant 

 

 An alternate use is illustrated in Fig 2.2b. Here, the constant X corresponds to a memory 

address and the content of the index register defines the offset to the operand. In either case, 

the effective address is the sum of two values, one is given explicitly in the instruction and the 

other is stored in the register.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig 2.2b: Offset is in the register 

 

 



Relative Addressing  
 Here the Program Counter (PC) is used instead of a general purpose register. In Relative 

mode, the effective address is determined by the Index mode using program counter in place 

of general-purpose register 𝑅𝑖. It’s most common use is to specify the target address in branch 

instructions. An instruction such as 

 

𝐵𝑟𝑎𝑛𝑐ℎ > 0     𝐿𝑂𝑂𝑃 

causes program execution to go to the branch target location identified by the name LOOP if 

the branch condition is satisfied. This location can be computed by specifying it as an offset 

from the current value of the program counter. Suppose that Relative mode is used to generate 

the target branch address LOOP in the Branch instruction of the program 

𝐿𝑂𝑂𝑃:        𝐴𝑑𝑑      (𝑅2), 𝑅0 

                  𝐴𝑑𝑑        #4, 𝑅2 

                  𝐷𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡    𝑅1 

                            𝐵𝑟𝑎𝑛𝑐ℎ > 0      𝐿𝑂𝑂𝑃 

         

          Assume that the four instructions of the loop body, starting at LOOP are located at 

memory locations 1000, 1004, 1008 and 1012. Hence the updated contents of the PC at the 

time of branch target address is generated will be 1016. To branch to location LOOP(1000), 

the offset needed is 𝑋 = −16.  

 

 

 

 

 

 

 

 

Auto-increment mode – The effective address of the operand is the contents of a register 

specified in the instruction. After accessing the operand, the contents of this register is 

automatically incremented to point to the next item in the list. The Auto-increment mode is 

written as 

(𝑅𝑖) + 

 

             The increment is 1 for byte-sized operands, 2 for 16 bit operands and 4 for 32 bit 

operands. 

 

 

Auto-decrement mode – The content of a register specified in the instruction is first 

automatically decremented and then used as effective address of the operand. In this mode, 

operands are accessed in descending address order.  

 These two modes can be used together to implement an important data structure called 

stack.   

 

 

b. Write a Program to compute the sum of test  scores of all the students in the three 

tests. Store the corresponding sums in memory. 



Sol: 

 

Suppose that we wish to compute the sum of all scores obtained on each of the tests and store 

these three sums in memory locations SUMI, SUM2, and SUM3.  

 

 

 

Q.4: 

a. Explain the Rotate and shift instructions with an example. 

Sol: 

 

Shift and Rotate Instructions 
 

 There are applications that require bits of an operand to be shifted to the right or left 

some specified number of bit positions. For general operands we use a logical shift. For a 

number we use an arithmetic shift which preserves the sign of the number. 

 

Logical Shifts 

 

 Two logical shift instructions are needed, one for shifting left (LShiftL) and another for 

shifting right (LShiftR). These instructions shift an operand over a number of bit positions 

specified in a count operand contained in the instruction. The general form of logical left shift 

instruction is  

 

LShiftL     count, dst 

 

The count operand may be given as an immediate operand or it may be contained in the 

processor register. Vacated positions are filled with zeros, and the bits shifted out are passed 

through the Carry flag C, and then dropped. Involving the C flag in shifts is useful in arithmetic 

operations on large numbers that occupy more than one word. Fig 2.10 illustrates all the shift 

operations. 



 

 

  

                                                                                                                                            0 

 

 

before:  

 

 

 after: 

   

 

(a)  Logical shift Left                                      LShiftL      #2,  R0 

 

 

 

  

          0    

  

   

   before:      

 

 

 

    after:    

 

(b) Logical shift right                                     LShiftR      #2,  R0 

 

 

 

    

 

 

 

 

 

 

        before:     

 

 

 

          after: 

 

(c) Arithmetic shift right                                     AShiftR      #2,  R0 

 

Fig 2.10: Logical and arithmetic shift instructions 

 

 

Rotate Operations 

 

C R0 

0 0    1    1     1     0   .   .     .     .   .      .   .    .               0      1       1 

1    1    0     .       .      .     .     .   .      .   .    0       1       1      0      0 

00  

1 

R0 C 

0   1   1   1    0   .       .      .     .     .   .      .   .              0      1       1 0 

0   0   0   1    1    1     0 .       .      .     .     .   .      .   .                    0 0 

R0 C 

1   0   0   1    1   .       .      .     .     .   .      .   .              0      1       0 0 

1   1   1   0    0      1      1   .       .      .     .     .   .      .   .               0      

00              0 

0 



 To preserve all the bits, a set of rotate can be used. They move the bits that are shifted 

out of one end of the operand back in to the other end. Two versions of both left and right rotate 

instructions are provided. In one version, bits are of the operand are simply rotated. In the other 

version, the rotation includes the C flag. Figure 2.11 shows the left and right rotate operations 

with and without C flag being include in the rotation. Note that when C flag is not included in 

the rotation, it still retains the last bit shifted out of the end of the register.  

 

 

 

 

 

 

 

 

 

     before:    

 

 

 

        after: 

 

 

(a) Rotate left without carry                                     RotateL      #2,  R0 

 

 

 

 

 

 

 

   

 

 

 

 

 

   before: 

 

 

 

     after: 

 

 

(b) Rotate left with carry                                     RotateLC      #2,  R0 

 

 

 

 

 

 

C R0 

0 0    1    1     1     0   .   .     .     .   .      .   .    .               0      1       1 

1    1    0     .       .      .     .     .   .      .   .    0       1       1      0      1 

00  

1 

C R0 

0 0    1    1     1     0   .   .     .     .   .      .   .    .               0      1       1 

1    1    0     .       .      .     .     .   .      .   .    0       1       1      0     0 

00  

1 



 

 

 

      before: 

 

 

 

        after: 

 

 

 

(c) Rotate right without carry                                     RotateR      #2,  R0 

 

 

 

 

 

 

    

      before: 

 

 

 

         after: 

 

 

(d) Rotate right with carry                                     RotateRC      #2,  R0 

 

Fig 2.11: Rotate instructions 

 

 

 

 

 

Q.4: 

b. Define Subroutine. Explain subroutine linkage using a Link register 

Sol: 

 

 

Subroutines 
 

 It is often necessary to perform a particular subtask many times on different data values. 

Such subtask is called subroutine. When a program branches to a subroutine we call that it is 

calling a subroutine. The instruction that performs this branch operation is called a Call 

instruction. The subroutine is said to return to program that called it by executing a Return 

R0 C 

0   1   1   1    0   .       .      .     .     .   .      .   .              0      1       1 0 

1   1  0   1    1    1     0 .       .      .     .     .   .      .   .                    0 1 

R0 C 

0   1   1   1    0   .       .      .     .     .   .      .   .              0      1       1 0 

1   0   0   1    1    1     0 .       .      .     .     .   .      .   .                    0 1 



instruction. The location where the calling program resumes execution is the location pointed 

by the updated PC while the Call instruction being executed. Hence the contents of the PC must 

be saved by the Call instruction to enable correct return to the calling program. This way in 

which the computer makes it possible to call and return from subroutines is referred to as 

subroutine linkage method.  

 

 The Call instruction is a special branch instruction that performs the following 

operations: 

1. Store the contents of PC in the link register. 

2. Branch to the target address specified by the instruction. 

 

The Return instruction is a special branch instruction that performs the operation: 

             Branch to the address contained in the link register. 

 

Fig 2.6 illustrates this procedure. 

 

 

Memory              Calling program                               Memory                      Subroutine SUB 

location                                                                         location 

                                                                       

•    

•      

•      

   200                   Call     SUB                                           1000                          First instruction 

   204                   next   instruction                                                                                    

•    

•     

•      

                                                                                            Return 

 

 

 

 

 

                             1000 

 

 

 

 

      PC      

 

 

 

     Link 

 

   

                            Call                                                         Return 

 

Fig 2.6:  Subroutine linkage using a link register 

 

204 

204 



 

c. What are Assembly Directives? Explain any two directives. 

Sol: 

 

Assembler Directives  

 The assembly language allows the programmer to specify other information needed to 

translate the source program to object program. Suppose the name SUM is used to represent the 

value 200. This fact may be conveyed to the assembler program through a statement such as  

SUM   EQU    200 

 This statement does not denote the instruction that will be executed when the object 

program is run. It informs the assembler that the name SUM should be replaced by the value 

200 wherever it appears in the program. Such statements are assembler directives                  (or 

commands) are used by the assembler when it translates the source program in to a object 

program.  

ORIGIN is a directive that tells the assembler program where in the memory to place the data 

block. 

DATAWORD directive is used to inform the assembler to place the data in the address. 

RESERVE directive declares a memory block and does not cause any data to be loaded in 

these locations.   

ORIGIN directive specifies that the instructions of an object program are to be loaded in the 

memory starting at an address.  

END is directive which indicates the end of the source program text. The END directive 

includes the label START, which is the address of the location at which execution of the 

program is to begin. 

RETURN is an assembler directive that identifies the point at which the execution of the 

program should be terminated. 

 The assembly language requires statements in a source program to be written in the 

form 

Label   Operation   Operand(s)   Comment 

Label is an optional name associated with the memory address where the machine 

language instruction produced from the statement is loaded. The Operation field contains the 

OP code mnemonic of the assembler directive. The Operand field contains the addressing 

information for accessing one or more operands depending on the type of instruction.  

 

 
 

 

 



 

 

5.  a) Define I/O interface. Explain I/O interface to connect an input device to the bus with neat 

diagram. 

A simple arrangement to connect I/O devices to a computer is to use single bus 

arrangement as shown in Fig1. The bus enables the devices connected to it to exchange 

information. It consists of three set of lines to carry address, data and control signals. Each 

I/O device is assigned unique set of addresses. 

Memory-mapped I/O: When I/O devices and the memory share the same address space, 

the arrangement is called memory-mapped I/O. 

With the memory mapped I/O any machine instruction that can access memory can 

be used to transfer data to or from an I/O device. 

    Move DATAIN, R0 

Reads data from the DATAIN and stores into processor register R0. Similarly 

Move R0, DATAOUT 

Sends the contents of register R0 to location DATAOUT which is the output data 

buffer of a display unit or a printer. 

 

 

Fig1: Simple bus structure 

 

 

 

 

 
Processor 

 

 
Memory 

 

 
I/O Device 1 

 

 
I/O Device n 



                            

Fig 2: I/O interface of an input device 

Fig 2 illustrates the hardware required to connect the I/O device to the bus. The address 

decoder enables the device to recognize its address when its address appears on the address 

lines. The data register holds the data being transferred to or from the processor. The status 

register contains the information relevant to the operation of I/O device. Both status and data 

registers are connected to the data bus and assigned unique addresses. 

Interface circuit: The address decoder, data & status registers and  the control circuitry 

required  to coordinate I/O transfers constitute the device interface circuit. 

 

5. b) What is Interrupt? Discuss interrupt I/O method for data transfer 

 

The other tasks can be performed by the processor while waiting for the I/O device to 

become ready. When the I/O device becomes ready, it sends a hardware signal called 

interrupt to the processor. Using the interrupts waiting periods can be eliminated. 

Consider a task that requires some computations to be performed and the results to be 

printed on a line printer. This is followed by more computations and output and so on. 

Let the program consists of two routines COMPUTE and PRINT. Assume 

COMPUTES produces a set of ‘n’ lines of output to be printed by PRINT routine. 

 

Address lines 
 

Bus Data lines 
 

Control lines 
 

 

 

 

 

 

 

 
 

   
 

 

 

 

 

 

 
 

 

 

 
Input Device 

Data & Status 

Registers 

Control Circuits Address 

Decoder 



 

Fig 4: Transfer of control through the use of interrupts 
 

It is possible to overlap printing and computation i.e. to execute COMPUTE routine while 

printing is in progress, a faster overlap speed of execution will result. Whenever printer becomes 

ready, it alerts the processor by sending a interrupt request signal. In response the processor 

interrupts the COMPUTE routine and transfers the control to the PRINT routine. This process 

continues until all ‘n’ lines are printed and PRINT routine ends. 

The routine executed in response to an interrupt request is called the interrupt-

service routine, which is the PRINT routine in the above example. Interrupts bear 

considerable resemblance to subroutine calls. 

i. Assume that an interrupt request arrives during execution of instruction i. (refer Fig. 4). 

ii. Then, it loads the program counter with the address of the first instruction of the 

interrupt-service routine. Let us assume that this address is hardwired in the processor.  

iii. After execution of the interrupt-service routine, the processor has to come back to 

instruction i +1. 

iv. Therefore, when an interrupt occurs, the current contents of the PC, which point to 

instruction i + 1, must be put in temporary storage in a known location.  

v. A Return from interrupt instruction at the end of the interrupt-service routine reloads 

the PC from that temporary storage location, causing execution to resume at instruction 

i +1. 

vi. In many processors, the return address is saved on the processor stack.  

Alternatively, it may be saved in a special location, such as a register provided for this purpose 

 

 

 

 

 

5. C) Describe two methods of handling multiple devices 

Handling Multiple devices: 



The information needed to determine whether a device is requesting an interrupt is available 

in its status register. When a device raises an interrupt request, one of the bits of the status 

register is set to 1 which we call IRQ bit. 

e.g. KIRQ, DIRQ are the interrupt request bits for keyboard and display. The simplest way to 

identify the interrupting device is to have the interrupt-service routine poll all I/O devices 

connected to the bus. The polling scheme has the disadvantage that the time spent 

interrogating the IRQ bits of all the devices that may not be requesting any service. An 

alternate approach is to use vectored interrupts. 

 

Vectored Interrupts: 

A device requesting an interrupt can identify itself by sending special code to the processor 

over the bus. The code supplied by the device represents the starting address of the 

interrupt service routine. The code length is 4 to 8 bits. The processor reads this address 

called the interrupt vector and stores it into the PC. This arrangement implies that the 

interrupt-service routine for a given device must always start at the same location. The 

interrupt vector may also include a new value for a processor status register.  

The interrupted device must wait to put data on the bus only when the processor is ready to 

receive it. When the processor is ready to receive the vector interrupt code, it activates the 

interrupt acknowledge line INTA. The I/O device responds by sending its interrupt vector 

code and turning off the INTR signal. 

 

6. a) Explain the use of DMA controllers in a computer system with neat diagram. 

To transfer large blocks of data at high speeds, an alternate approach is used. A special control unit 

may be provided to allow transfer of block of data directly between external device and main 

memory without intervention by processor. This approach is called direct memory access or DMA. 

DMA transfers are performed by control circuits that are part of I/O interface called DMA controller. 

The DMA controller performs functions that would normally be carried out by processor when 

accessing main memory. 

 



The R/𝑊̅ bit determine the direction of transfer. When this bit is set to 1 by a program 

instruction, the controller performs a read operation that is it transfers data from memory to 

I/O device. When transfer is complete, it sets Done flag to 1. When IE is1, it causes the 

controller to raise an interrupt after it has completed transferring block of data. Finally, IRQ 

bit is set to 1 when it has requested interrupt. 

Requests from DMA devices are given high priority than processor requests. Among 

different DMA devices high priority is given to high speed peripherals such as disks, high 

speed network interface or graphic display device. 

The processor originates most memory cycles, the DMA controller is said to steal 

memory cycles from processor. This technique is called cycle stealing. DMA controller 

is given access to main memory to transfer a block of data without interruption. This is called 

as block or burst mode. 

 

6. b) Write a note on bus arbitration 

The device that is allowed to initiate data transfers on the bus at any given time is called the bus 
master. When the current master relinquishes control of the bus, another device can acquire this 
status. Bus arbitration is the process by 'which the next device to become the bus master is selected 
and bus mastership is transferred to it. The selection of the bus master must take into account the 
needs of various devices by establishing a priority system for gaining access to the bus. There are two 
approaches to bus arbitration: centralized and distributed. In centralized arbitration, a single-bus 
arbiter performs the required arbitration. In distributed arbitration, all devices participate in the 
selection of the next bus master. 
Centralized Arbitration 



The bus arbiter may be the processor or a separate unit connected to the bus. In this case, the 
processor is normally the bus master unless it grants bus mastership to one of the controllers. A DMA 
controller indicates that it needs to become the bus master by activating the Bus-Request line, BR. 
The signal on the Bus-Request line is the logical OR of the bus requests from all the devices  
connected to it. When Bus-Request is activated, the processor activates the Bus-Grant signal, BGI, 
indicating to the DMA controllers that they may use the bus when it becomes free. This signal is 
connected to all DMA controllers using a daisy-chain arrangement. Thus, if DMA controller 1 is 
requesting the bus, it blocks the propagation of the grant signal to other devices. Otherwise, it 
passes the grant downstream by asserting BG2. 

 
 
Distributed arbitration means that all devices waiting to use the bus have equal responsibility in 
carrying out the arbitration process, without using a central arbiter. Each device on the bus is 
assigned a 4-bit identification number. When one or more devices request the bus, they assert the 
Start-Arbitration signal and place their 4-bit ID numbers on four open-collector lines, ARBO through 
ARB3. A winner is selected as a result of the interaction among the signals transmitted over these 
lines by all contenders. The net outcome is that the code on the four lines represents the request 
that has the highest ID number. 

 
 



7. a) Explain the organization of 1K X 1 memory chip 

 

• 10-bit address with 1 bit data line 

• 10-bit address is divided into two groups of 5 bits each to form the row and column 

addresses for the cell array 

• A row address selects arow of 32 cells, all of which are accessed in parallel.  

• However, according to the column address, only one of these cells is connected to 

the external data line by the output multiplexer and input demultiplexer. 

7. b) Write a note on:  (i) Static memories (ii) Cache memory 

 

• Memories that consist of circuits capable of retaining their state as long as power is applied 

are known as static memories. 

• Two inverters are cross connected to implement a basic flip-flop latch. 

• The latch is connected to two bit lines by transistors T1 and T2 

• These transistors act as switches that can be opened or closed under control of the word 

line. 

• When word line is at ground level, the transistors are turned off and the latch retains its state 

• Consider that the cell is in state 1 if the logic value at point X is 1 and at point Y is 0. 

• This state is maintained as long as the signal on the word line is at ground level. 



• Read operation: In order to read state of SRAM cell, the word line is activated to close 

switches T1 and T2.  

• If the cell is in state 1, the signal on bit line b is high and the signal on bit line b' is low. 

• Sense/Write circuits at the bottom monitor the state of b and b’. 

• Write operation: The state of the cell is set by placing the appropriate value on bit line b and 

its complement on b’, 

• When the word line is activated, it forces the cell into the corresponding state. 

• The required signals on the bit lines are generated by the Sense/Write circuit. 

• SRAMs are said to be volatile memories 

• Application of SRAM: 

• Static RAMs has access time of a few nanoseconds 

• SRAMs are used in applications where speed is of critical concern. 

 
• Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch 

• In state 1, the voltage at point X is maintained high by having transistors T3 and T6 on, while 

T4 and Ts are off 

• If T1 andT2 are turned on (closed), bit lines b and b' will have high and low signals, 

respectively. 

• The power supply voltage, Vsupply is 5V in older CMOS SRAMs or 3.3 V in new low-voltage 

versions. 

• A major advantage of CMOS SRAMs is their very low power consumption 

 

Cache Memory 

• Cache memory is an architectural arrangement which makes the main memory appear faster 

to the processor than it really is.  

• Cache memory is based on the property of computer programs known as “locality of 

reference”. 

• Analysis of programs indicates that many instructions in localized areas of a program are 

executed repeatedly during some period of time, while the others are accessed relatively less 

frequently.  

• These instructions may be the ones in a loop, nested loop or few procedures calling each 

other repeatedly. This is called “locality of reference”. 

• Temporal locality of reference: 

• Recently executed instruction is likely to be executed again very soon. 

• Spatial locality of reference: 



• Instructions with addresses close to a recently executed instruction are likely to be executed 

soon. 

 
At any given time, only some blocks in the main memory are held in the cache. Which  blocks 

in the main memory are in the cache is determined by a “mapping function”. 

When the cache is full, and a block of words needs to be transferred from the main  memory, 

some block of words in the cache must be replaced. This is determined by a “replacement 

algorithm”. 

Existence of a cache is transparent to the processor. The processor issues Read and Write 

requests in the same manner. If the data is in the cache it is called a Read or Write hit. 

Read hit: 

 The data is obtained from the cache, main memory is not involved. 

Write hit: 

Cache has a replica of the contents of the main memory. Contents of the cache and the main 

memory may be updated simultaneously. This is the write-through protocol.  Alternately, 

update the contents of the cache, and mark it as updated by setting a bit known as the dirty 

bit or modified bit. The contents of the main memory are updated when this block is 

replaced. This is write-back or copy-back protocol. 

If the data is not present in the cache, then a Read miss or Write miss occurs. 

 

Read miss: 

Block of words containing this requested word is transferred from the memory. After the 

block is transferred, the desired word is forwarded to the processor. The desired word may 

also be forwarded to the processor as soon as it is  transferred without waiting for the entire 

block to be transferred. This is called  load-through or early-restart. 

Write-miss: 

Write-through protocol is used, then the contents of the main memory are updated directly. 

If write-back protocol is used, the block containing the addressed word is first brought into 

the cache. The desired word is overwritten with new information. 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

8. a. Explain the Magnetic Disc Principles. [10, L1, CO4] 

 

Magnetic Hard Disks 

⚫ The storage medium in a magnetic-disk system consists of one or more disks 

mounted on a common spindle. 

⚫ A thin magnetic film is deposited on each disk, usually on both sides. 

⚫ The disks are placed in a rotary drive so that the magnetized surfaces move in 

close proximity to read/write heads, as shown in Figure 5.29a. 

⚫ The disks rotate at a uniform speed. 

⚫ Each head consists of a magnetic yoke and a magnetizing coil, as indicated in 

Figure 5.29b. 



 

 

 

Digital information can be stored on the magnetic film by applying 

current pulses of suitable polarity to 

the magnetizing coil. 

⚫ This causes the magnetization of the film in the area immediately 

underneath the head to switch to a direction parallel to the applied 

field. 

⚫ The same head can be used for reading the stored information. 



⚫ In this case, changes in the magnetic field in the vicinity of the 

head caused by the movement of the film relative to the yoke induce 

a voltage in the coil, which now serves as a sense coil. 

 

The polarity of this voltage is monitored by the control circuitry to 

determine the state of magnetization of the film. 

⚫ Only changes in the magnetic field under the head can be sensed 

during the Read operation. 

⚫ Therefore, if the binary states 0 and 1 are represented by two 

opposite states of magnetization, a voltage is induced in the head 

only at 0-to-1 and at 1-to-0 transitions in the bit stream. 

⚫ A long string of 0s or 1s causes an induced voltage only at the 

beginning and end of the string. To determine the number of 

consecutive 0s or 1s stored, a clock must provide information for 

synchronization. 

⚫ In some early designs, a clock was stored on a separate track, 

where a change in magnetization is 

forced for each bit period. 

⚫ Using the clock signal as a reference, the data stored on other 

tracks can be read correctly. The modern approach is to combine the 

clocking information with the data (self-clocking schemes). 

⚫ One simple scheme, depicted in Figure 5.29c, is known as phase 

encoding or Manchester encoding. 

⚫ In this scheme, changes in magnetization occur for each data bit, 

as shown in the figure. 

⚫ A change in magnetization is guaranteed at the midpoint of each 

bit period, thus providing the clocking information. 



⚫ The drawback of Manchester encoding is its poor bit-storage 

density. 

⚫ The space required to represent each bit must be large enough to 

accommodate two changes in magnetization. 

 

 

 

 

 

 

 

 

 

 

8. b. Draw and explain the internal organization of 2M*8 

asynchronous DRAM chip. [10, L2, CO4] 



 

 

 

The high-order 12 bits constitute the row address and the low-order 

9 bits of the address constitute column address of a byte. 

⚫ To reduce the number of pins needed for external connections, 

the row and column addresses are multiplexed on 12 pins. 

⚫ During a Read or a Write operation, the row address is applied 

first. 

⚫ It is loaded into the row address latch in response to a signal pulse 

on the Row Address Strobe (RAS) input of the chip. 

Then a Read operation is initiated, in which all cells on the 

selected row are read and refreshed. 



⚫ Shortly after the row address is loaded, the column address is 

applied to the address pins and loaded into the column address latch 

under control of the Column Address Strobe (CAS) signal. 

⚫ The information in this latch is decoded and the appropriate group 

of 8 Sense/Write circuits are selected. 

⚫ If the R/Wഥ control signal indicates a Read operation, the output 

values of the selected circuits are transferred to the data lines, D7-0. 

 

⚫ For a Write operation, the information on the D7-0 lines is 

transferred to the selected circuits. 

⚫ This information is then used to overwrite the contents of the 

selected cells 

in the corresponding 8 columns. 

In commercial DRAM chips, the RAS and CAS control signals are 

active low. 

⚫ To indicate this fact, these signals are shown on diagrams as RAS 

and CAS. 

⚫ To ensure that the contents of a DRAM are maintained, each row 

of cells must be accessed periodically. 

⚫ A refresh circuit usually performs this function automatically. 

The timing of the memory device is controlled asynchronously. 

⚫ A specialized memory controller circuit provides the necessary 

control signals, RAS and CAS, that govern the timing. 

⚫ The processor must take into account the delay in the response of 

the memory. 

⚫ Such memories are referred to as asynchronous DRAMs. 



 

9.a. Discuss with a neat diagram the single bus organization 

of data path inside the processor. 

 

Processor Organization: 

⚫ Figure 7.1 shows an organization in which the ALU and all the 

registers are interconnected via a single common bus. 

⚫ This bus is internal to the processor. 

⚫ The data and address lines of the external memory bus are 

connected to the internal processor bus via the memory data 

register, MDR, and the memory address register, MAR, 

respectively.Register MDR has two inputs and two outputs.

 

 



• Data may be loaded into MDR either from the memory bus or 
from the internal processor bus. 

⚫ The data stored in MDR may be placed on either bus. 

⚫ The input of MAR is connected to the internal bus, and its output 

is connected to the external bus. 

⚫ The control lines of the memory bus are connected to the 

instruction decoder and control logic block. 

⚫ This unit is responsible for issuing the signals that control the 

operation of all the units inside the processor and for interacting with 

the memory bus. 

The number and use of the processor registers R0 through R(n - 1) 

vary considerably from one processor to another. 

⚫ Registers may be provided for general-purpose use by the 

programmer. 

⚫ Some may be dedicated as special-purpose registers, such as index 

registers or stack pointers. 

⚫ The registers, Y, Z, and TEMP are used by the processor for 

temporary storage during execution of some instructions. 

⚫ These registers are never used for storing data generated by one 

instruction for later use by another instruction. 

The multiplexer MUX selects either the output of register Y or a 

constant value 4 to be provided as input A of the ALU. 

⚫ The constant 4 is used to increment the contents of the program 

counter. 

⚫ We will refer to the two possible values of the MUX control input 

Select as Select4 and SelectY for selecting the constant 4 or register Y, 

respectively. 



As instruction execution progresses, data are transferred from one 

register to another, often passing through the ALU to perform some 

arithmetic or logic operation. 

⚫ The instruction decoder and control logic unit is responsible for 

implementing the actions specified by the instruction loaded in the IR 

register. 

⚫ The decoder generates the control signals needed to select the 

registers involved and direct the transfer of data. 

⚫ The registers, the ALU, and the interconnecting bus are collectively 

referred to as the datapath. 

⚫ Transfer a word of data from one processor register to another or 

to the ALU. 

⚫ Perform an arithmetic or a logic operation and store the result in a 

processor register. 

⚫ Fetch the contents of a given memory location and load them into 

a processor 

register. 

⚫ Store a word of data from a processor register into a given 

memory location. 

 

9.b. What are actions required to execute a complete 

instruction ADD (R3), R1. [10,L1, CO5] 

 

Execution of a Complete Instruction 

⚫ Consider the instruction Add (R3), R1 

⚫ Executing this instruction requires the following actions: 



1. Fetch the instruction 

2. Fetch the first operand (the contents of the memory 

location pointed to by R3) 

3. Perform the addition 

4. Load the result into R1 

 

⚫ Figure 7.6 gives the sequence of control steps required to 

perform these operations for the single-bus architecture of 

Figure 7.1. 

⚫ Steps 1 through 3 constitute the instruction fetch phase, 

⚫ This is the same for all instructions. 

⚫ The instruction decoding circuit interprets the contents of 

the IR at the beginning of step 4. 



⚫ This enables the control circuitry to activate the control 

signals for steps 4 through 7, which constitute the execution 

phase. 

 

10.a. Draw and Explain Multiple bus organization 

of a CPU. [10,L1, CO5] 

 

Multiple-Bus Organization 

⚫ To reduce the number of steps needed, most commercial 

processors provide multiple internal paths that enable several 

transfers to take place in parallel. 

⚫ Figure 7.8 depicts a three-bus structure used to connect 

the registers and the ALU of a processor. 



 

 

 

⚫ All general-purpose registers are combined into a single 

block called the register file. 

⚫ Implemented in the form of an array of memory cells. 

⚫ The register file in Figure 7.8 is said to have three ports. 

⚫ There are two outputs, allowing the contents of two 

different registers to be accessed simultaneously and have 

their contents placed on buses A and B. 



⚫ The third port allows the data on bus C to be loaded into a 

third register during the same clock cycle. 

⚫ Buses a and B are used to transfer the source operands to 

the a and B inputs of the ALU, where an arithmetic or logic 

operation may be performed. 

⚫ The result is transferred to the destination over bus C. 

⚫ If needed, the ALU may simply pass one of its two input 

operands unmodified to bus C. 

⚫ We will call the ALU control signals for such an operation 

R=A or R=B. 

⚫ The Incrementer unit is used to increment the PC by 4. 

⚫ Using the Incrementer eliminates the need to add 4 to the 

PC using the main ALU. 

⚫ The source for the constant 4 at the ALU input multiplexer 

is still useful. 

⚫ It can be used to increment other addresses, such as the 

memory addresses in LoadMultiple and StoreMultiple 

instructions. 

 

10.b. Draw and Explain organization of the control unit to 

allow conditional branching in the microprogram. [10, 

L1,CO5] 

 



 

⚫ The required control signals are determined by the 

following information: 

⚫ Contents of the control step counter 

⚫ Contents of the instruction register 

⚫ Contents of the condition code flags 

⚫ External input signals, such as MFC and interrupt requests 

⚫ The decoder/encoder block in Figure 7.10 is a 

combinational circuit that generates the required control 

outputs, depending on the state of all its inputs. 



⚫ By separating the decoding and encoding functions, we 

obtain the more detailed block diagram in Figure 7.11. 

 

⚫ The step decoder provides a separate signal line for each 

step, or time slot, in the control sequence. 

⚫ Similarly, the output of the instruction decoder consists 

of a separate line for each machine instruction. 

⚫ For any instruction loaded in the IR, one of the output 

lines INS1 

through INSm is set to 1, and all other lines are set to 0. 

⚫ The input signals to the encoder block are combined to 

generate the individual control signals Yin, PCout, Add, End, 

and so on. 



 

 

 


