s L]

CMR
INSTITUTE OF
TECHNOLOGY
Internal Assessment Test - IT
Sub: | Introduction to Python, Data and Control Systems Code: 22MBABA303
Date: 16-04-2025 Duration: 90 mins Max Marks: 50 Sem: I Branch: MBA

SET-1I

1.a. Explain how arrays are different from lists in Python

Feature Python List Array (from array module or NumPy)

Data Type Can hold different data types (e.g., int, Can hold only one data type (e.g., all integers or all
float, str) floats)

Flexibility Very flexible and dynamic Less flexible, but mare efficient for numerical data

Performance Slower for large numerical data Faster and more memory-efficient for large numerical

operations

Functionality General-purpose, not optimized for math Optimized for numerical and scientific computing

Built-in Native to Python ([1) Requires importing array or numpy

Support

Example [1, 'hello®, 3.14] array.array('i', [1, 2, 3]) Or np.array([1, 2,

3D

1.b. Assume a string of first 10 letters of English alphabet, using the slice operation
perform the following:

1) Print first 3 letters from the list
alphabet = "abcdefghij"

first_three = alphabet[:3]
print("First 3 letters:", first_three)

ii) Print from 5t letter to end of the list

alphabet = "abcdefghij"

from_fifth_onwards = alphabet[4:]

print("From 5th letter to end:", from_fifth_onwards)

iii) Print any three letters from the middle
alphabet = "abcdefghij"
middle_three = alphabet[3:6]
print("Three letters from the middle:", middle_three)

1.c. Analyze different types of Collections available in Python
Python provides several built-in collection data types to store and organize data efficiently. Each type
serves a different purpose based on the structure, mutability, and access pattern.

List
e Ordered, mutable, allows duplicate values.
e Stores items in a sequence.
e Elements can be accessed via index.
my_list=1[1, 2, 3, 4]

Tuple
e Ordered, immutable, allows duplicates.
e Faster than lists and can be used as dictionary keys if they contain only immutable data.
my_tuple =(1, 2, 3)

Set
e Unordered, mutable, no duplicate values.
e Ideal for membership testing and removing duplicates.
my_set={1, 2, 3, 3}

Dictionary
e Unordered (ordered since Python 3.7), mutable, key-value pairs.
e Keys must be unique and immutable; values can be of any type.
my_dict = {"State": "Karnataka", "City": “Bangalore”}

2.a. Differentiate parameters and arguments in a function

Concept Parameter Argument

Definition A variable in the function definition A value passed to the function when it is called
When used While defining a function While calling a function

Purpose Acts as a placeholder for input Provides actual data to the function

Location Inside the parentheses of a function definition Inside the parentheses during function call

2.b. Explain the methods of Dictionary, fromkeys(), items() and pop() using an example

Method |Purpose

fromkeys()||Creates a new dictionary with given keys and a default value

items() Returns a list-like view of key-value pairs

pop() Removes and returns the value of the specified key

1. fromkeys()
Creates a new dictionary with specified keys and a common default value.
Example:
keys = ['a', 'b', 'c']
new_dict = dict.fromkeys(keys, 0)
print(new_dict)
Output:
{'a":0,'p" 0, 'c": 0}
2. items()
Returns a view object that displays a list of the dictionary’s (key, value) pairs.
Example:
my_dict = {"name": 'KNK', ‘city': ‘BLR’}
print(my_dict.items())
Output:
dict_items([('name’, 'KNK'), (‘age’, ‘BLR’)])
You can loop through items() like this:
for key, value in my_dict.items():
print(key, "->", value)
3. pop()

Removes the item with the specified key and returns its value. If the key is not found, it throws a
KeyError unless a default value is provided.

Example:

my_dict={a" 1, 'b": 2, 'c": 3}
value = my_dict.pop('b’)
print("Popped value:", value)
print("Updated dict:", my_dict)
Output:

Popped value: 2

Updated dict: {'a": 1, 'c': 3}

2.c. Evaluate the effectiveness of two different functions for adding two numbers, one
with local variables, one with global variables
As local variables

def add_numbers():
a=10 # local variable
b =20 #local variable
result=a+b
print("Sum:", result)

add_numbers()

As global Variables

Global variables

x=15

y=25

def add_numbers():
result = x +y # using global variables
print("Sum:", result)

add_numbers()

3.a. Use datetime module to build a program that gets the current date and prints that day
of the week

import datetime

Get current date

current_date = datetime.date.today()

Get the day of the week (e.g., Monday, Tuesday, etc.)
day_of_week = current_date.strftime("%A")
print("Today's date is:", current_date)

print("Day of the week is:", day_of week)

3.b. Analyze the significance of exception handling on par with the other types of errors

Aspect Errors Exceptions

Definition Issues in code that are usually syntax-related or Issues during runtime that can be handled

beyond control

When Occurs Before execution (compile-time) or serious runtime During execution (runtime)
faults
Can be X No, they typically crash the program Yes, using try - except blocks
handled?
Examples SyntaxError, IndentationError, MemoryError ZeroDivisionError, ValueError,

FileNotFoundError

3c. Explain different Python packages along with their importance

4

Package Purpose

NumPy Numerical operations
Pandas Data analysis
Matplotlib Visualization
Scikit-learn Machine learning
TensorFlow Deep learning
Flask/Django Web development
Requests HTTP requests
BeautifulSoup Web scraping
Datetime Date/time operations
0S/Sys System operations

. Develop a Python program for

Accepting two numbers and find the quotient

Importance

Fast and efficient array operations

Easy handling of tabular data

Build charts and graphs

Simple ML model creation

Build complex neural networks

Build web apps and APIs

APl communication

Extract data from web pages

Useful in time-based data

File handling, system interaction

Handle the zero-division error using exception handling.

Accepts two numbers from the user.
Finds the quotient (division result).
Handles zero-division errors using try-except.

Program to find the quotient and handle ZeroDivisionError

try:
Accepting input from the user

num1 = float(input("Enter the numerator: "))
num2 = float(input("Enter the denominator: "))

Performing division

quotient = num1 / num2

print("Quotient is:", quotient)
except ZeroDivisionError:

print("Error: Cannot divide by zero!")
except ValueError:

print("Error: Please enter valid numbers.")

