
Page 1 of 15

IAT 1 Answer Key

Q1 a)What is android? Explain their versions and applications?

Android is a Stack of software for mobile devices that are an Operating System, Middleware and key

Applications

Android is a Linux-based operating system which is designed for touch screen mobile devices like smart

phones and tablet computers.

It is an open source technology that allows the software to be freely modified and distributed by device

manufacturers, wireless carriers and developers.

Android versions

Page 2 of 15

Page 3 of 15

Q1 b) List and explain the features of Android?

Page 4 of 15

Q2 a) Discuss about softwares and tools used in configuring android environment

1) Operating System

2) Java JDK

3) Android SDK

4) Android Development Tools (ADT)

Page 5 of 15

5) Android Virtual Devices (AVDs)

6) Emulators

7) Dalvik Virtual Machine

Q2 b) Explain architecture of Android with the neat diagram.

Page 6 of 15

The Android OS can be referred to as a software stack of different layers, where every layer is a group of

several programs components. It includes operating systems, middleware and important applications.

Every layer in the architecture provides different services.

Android has following layers

 Applications

 Application Framework

 Libraries Android Runtime

 Linux Kernel

1) Application
At this top layer, you will find applications that ship with the Android device (such as Phone,
Contacts, Browser, etc.), as well as applications that you download and install from the Android
Market. Any applications that you write are located at this layer.

2) Application Framework:
The Android application framework provides APIs for developers of the application layer, which is
actually an application framework. This layer contain following basic components:

 Activity Manager: This layer manages the lifecycle of application and provides a common
navigation backstack

 Window Manager: As the name suggest it manages the window surface. Then it organizes
the screen layout and locates the drawing surface and also performs other windows related
jobs

 View Manager: View the window

 Content Manager: Enables application to access data from other applications or to share
their own data

 Notification Manager: we get the notification from the system when the battery is low. If
the programmer wants he can also enable all applications to display customer alerts in the
status bar

 Package Manager: It manages the packages of the applications.

 Telephony Manager: handle the receiver call or voice calls.

 Resource Manager: Provide access to the non-code resources (Graphics, localized strings
and layout files)

 Location Manager: provides access to the system location services

Page 7 of 15

 XMPP Service Manager: manages services like music application, browser, ringtone etc.

3) Libraries

3rd layer of the android architecture Is the libraries layer. It is written in C and C++ libraries
Following are the major components of this layer:

 Surface manager: Handles all the surfaces rendered by each component of the frame

 Open GL ES: For rendering 2D and 3D graphics on embedded and mobile system

 SQLite database: It is a lightweight RDBMS

 Media Framework: is a set of APIs for developers which enables them to create a
multimedia application on an android platform.

 SGL: Scalable graphics libraries responsible for implementing low level graphics by using JNI

 Free type: Support the font quality, the image(bitmap images)

 SSL: Secured socket layer, for establishing secure communication between an app and a
server, ensuring data privacy and integrity

 Webkit: Provides browser support. It support browsers like Google Chromes, Apple safari
etc.

 Lib C : C libraries. Provides C libraries headers

4) Android Runtime
Android Runtime consists of Dalvik Virtual Machine and Core Libraries.
DVM(Dalvik Virtual Machine) : Dalvik Virtual Machine (DVM) is the custom program introduced for
Android apps. It takes the Java code and creates an optimized version of it in a file with
.dex(extension) which is known as Dalvik executable. This format allows the apps to run quickly
with fewer resources, i.e. on mobile phones and low-memory, slower devices.

Core Libraries: These are different from Java SE and Java ME libraries. But these libraries provide
most of the functionalities defined in the Java SE libraries

5) Linux Kernel
This is the kernel on which Android is based. This layer contains all the low level device drivers for
the various hardware components of an Android device.
Following are the drivers:

 Display driver

 Camera driver

 Bluetooth driver

 Binder driver(IPS)

 USB driver

 WiFi driver

 Keypad driver

 Audio driver

 Power management driver

Q3 a) Explain how you are creating first android application Creating the first android

application
1. Click on Eclipse icon and select your workspace

2. Select File -> New -> Project/Other

3. Expand the android folder and select android project and click Next

4. Give the Project Name and click Next

5. Choose your SDK to target whether Android 2.2 or Android 4.0 Here we select the Android 2.2 SDK and click

Next

Page 8 of 15

6. To configure the Android Project we have to give the Package Name as your wish in this format-

com.pkg.example and click Finish

7. In Package Explorer a new android project is created named AndroidProject

8. To write the program we have to open the main.xml

9. To save the changes made to your project, press Ctrl+s.

10. You are now ready to test your application on the Android Emulator. Select the project name in Eclipse and

press F11. You will be asked to select a way to debug the application. Select required Android Application

and click OK.

11. The Android Emulator will now be started (if the emulator is locked, you need to slide the unlock button to

unlock it first).

12. Click the Home button (the house icon in the lower-left corner above the keyboard) so that it now shows the

Home screen.

13. Click the application Launcher icon to display the list of applications installed on the device.

Q3b) Difference between Table Layout and Frame Layout

In Android, TableLayout and FrameLayout serve different purposes for arranging UI elements.

TableLayout

 Organizes UI components into rows and columns, similar to a table.

 Each cell can hold one view, and views are aligned in rows and columns.

 Useful for creating structured layouts like forms or grids.

 Example usage: Arranging TextViews and EditTexts in a registration form.

<TableLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:stretchColumns="1">

 <TableRow>

 <TextView

 android:text="Label 1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 <EditText

 android:hint="Input 1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 </TableRow>

 <TableRow>

 <TextView

 android:text="Label 2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 <EditText

 android:hint="Input 2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 </TableRow>

</TableLayout>

Page 9 of 15

FrameLayout

 Displays a single view or stacks multiple views on top of each other (overlapping).

 The child views can overlap and are typically positioned relative to the container.

 Useful for simple layouts or overlaying components like an image with a button.

 Example usage: Creating a layout where a TextView overlays an ImageView.

<FrameLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <ImageView

 android:src="@drawable/image"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 <TextView

 android:text="Overlay Text"

 android:layout_gravity="center"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

</FrameLayout>

Essentially, TableLayout is great for tabular layouts with rows and columns, while FrameLayout is

better for stacking or overlaying views.

Q4 a) Discuss about the anatomy of an android application.

Page 10 of 15

Q4 b) Explain neatly about Absolute and Relative Layouts

Page 11 of 15

The AbsoluteLayout enables you to specify the exact location of its children. Consider the following UI
defined in main.xml:

<?xml version=”1.0” encoding=”utf-8”?>
<AbsoluteLayout
android:layout_width=”fill_parent” android:layout_height=”fill_parent”
xmlns:android=http://schemas.android.com/apk/res/android>
<Button
android:layout_width=”188dp” android:layout_height=”wrap_content”
android:text=”Button” android:layout_x=”126px”
android:layout_y=”361px”/>
<Button
android:layout_width=”113dp” android:layout_height=”wrap_content”
android:text=”Button” android:layout_x=”12px”
android:layout_y=”361px”/>
</AbsoluteLayout>

There is a problem with absolute layout when the activity is viewed on a high resolution screen. For
this reason the AbslouteLayout has been deprecated since Android 1.5. It is not guaranteed to be
supported in future version of android.

RelativeLayout

The RelativeLayout enables you to specify how child views are positioned relative to each other.
Consider the following main.xml file:
<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout android:id=”@+id/RLayout”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”

http://schemas.android.com/apk/res/android

Page 12 of 15

xmlns:android=”http://schemas.android.com/apk/res/android”
>
<TextView android:id=”@+id/lblComments”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Comments” android:layout_alignParentTop=”true”
android:layout_alignParentLeft=”true”
/>
<EditText android:id=”@+id/txtComments”
android:layout_width=”fill_parent”

android:layout_height=”170px” android:textSize=”18sp”
android:layout_alignLeft=”@+id/lblComments”
android:layout_below=”@+id/lblComments”
android:layout_centerHorizontal=”true”
/>
<Button android:id=”@+id/btnSave”
android:layout_width=”125px”
android:layout_height=”wrap_content” android:text=”Save”
android:layout_below=”@+id/txtComments”
android:layout_alignRight=”@+id/txtComments”
/>
<Button android:id=”@+id/btnCancel”
android:layout_width=”124px”
android:layout_height=”wrap_content” android:text=”Cancel”
android:layout_below=”@+id/txtComments”
android:layout_alignLeft=”@+id/txtComments”
/>
</RelativeLayout>

The UI of the above code would look like –

 Each view is embedded within the relative layout has attributes that enable it to align with another
view.

 The value for each of these attributes is the ID for the view that you are referencing.
 These attributes are as follows:

Q5 a) Briefly discuss about basic views and their contents

Basic views used to design the UI of your Android applications

http://schemas.android.com/apk/res/android

Page 13 of 15

These basic views enable you to display text information, as well as perform some basic selection.

 TextView

 EditText

 Button

 ImageButton

 CheckBox

 ToggleButton

 RadioButton

 RadioGroup

<Button android:id=”@+id/btnSave”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Save” />

<EditText android:id=”@+id/txtName”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello”

/>

<ImageButton android:id=”@+id/btnImg1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:src=”@drawable/icon” />

 <CheckBox android:id=”@+id/chkAutosave”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Autosave” />

<CheckBox android:id=”@+id/star”

 style=”?android:attr/starStyle”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

<ToggleButton android:id=”@+id/toggle1”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

<RadioGroup android:id=”@+id/rdbGp1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:orientation=”vertical” >

 <RadioButton android:id=”@+id/rdb1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Option 1” />

 <RadioButton android:id=”@+id/rdb2”

Page 14 of 15

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Option 2” />

 </RadioGroup>

Q5 b) Discuss about Image views to display pictures

In Android, ImageView is a UI component used to display images. It supports various image formats

and can handle scaling, resizing, and other image-related properties.

Key Attributes

 android:src: Specifies the image to display.

 android:scaleType: Defines how the image should be scaled within the ImageView.

 android:contentDescription: Provides a description for accessibility purposes.

 android:adjustViewBounds: Allows the ImageView to adjust its size based on the image's

dimensions.

Syntax Example

<ImageView

 android:id="@+id/imageView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/example_image"

 android:scaleType="centerCrop"

 android:contentDescription="Example Image" />

Common scaleType Options

 center: Centers the image without scaling.

 centerCrop: Scales the image so that it fills the view while keeping its aspect ratio, cropping the

sides.

 fitCenter: Scales the image to fit within the view, maintaining its aspect ratio.

 fitXY: Stretches the image to fit both width and height.

You can use ImageView to display graphics, icons, or even dynamically loaded images at runtime. Do

you want to see some advanced examples, like loading images from the internet using libraries like

Glide or Picasso? Let me know!

Q6 a) List out common attributes of viewgroups.

One or more views can be grouped together into a ViewGroup. A ViewGroup (which is itself a special
type of view) provides the layout in which you can order the appearance and sequence of views.
Examples of ViewGroups include LinearLayout and FrameLayout. A ViewGroup derives from the base
class android.view.ViewGroup.

Each View and ViewGroup has a set of common attributes as shown in the following table.

Page 15 of 15

Some of these attributes are applicable only when a View is in a specific ViewGroup. For example, the
layout_weight and layout_gravity attributes are applicable only when a View is in either a LinearLayout
or a TableLayout.

 Android supports the following ViewGroups:
 LinearLayout
 AbsoluteLayout
 TableLayout
 RelativeLayout
 FrameLayout

Q6 b) Explain about understanding different components of a Screen and fundamentals of UI

Design?

	TableLayout
	FrameLayout
	RelativeLayout
	Key Attributes
	Syntax Example
	Common scaleType Options

