Solutions to IAT1 ESD
Ll

USN

INSTITUTE OF) omen
TECHMOLOGY ——
Internal Assessment Test - [
Sub: | Embedded System Design Code: BEC601
Date: 24/03/2025 | Duration: |90 mins | Max Marks: | 50 | Sem: | 6th | Branch: ECE
Answer Any FIVE FULL Questions
OBE
Marks |0 TRET

1. | What are embedded systems? List out the major applications of embedded systems. | [10] | CO1| L1
2. | Explain with the help of neat diagram static RAM and dynamic RAM operation. [10] | COI1| L2

3. | Differentiate the following: [10] | COl| L2
a. Von-Neumann architecture and Harvard architecture
b. Big-endian and Little endian processors

4. Explain the following on-board communication interfaces with the help of a neat [l0] | CO1| L2
diagram: a. UART b. 1-wire
5. | With the help of a neat diagram, explain the ARM bus technology used in embedded [10] | CO4| L2

systems.
6. | With the help of a neat diagram, explain the ARM core data flow model. [10] | CO4| L2
7. | Discuss various processor modes of ARM core. [10] | CO4| L2

1.1 WHAT IS AN EMBEDDED SYSTEM?

An embedded system is an electronic/electro-mechanical system designed to
perform a specific function and is a combination of both hardware and firmware
(software).

Every embedded system is unique, and the hardware as well as the firmware is
highly specialised to the application domain. Embedded systems are becoming an
inevitable part of any product or equipment in all fields including household appliances, telecommunications,
medical equipment, industrial control, consumer products, etc.

LO 1 Know what
an embedded

system is

1.5 MAJOR APPLICATION AREAS OF EMBEDDED SYSTEMS

We are living in a world where embedded systems play a vital role in our day-
to-day life, starting from home to the computer industry, where most of the
people find their job for a livelihood. Embedded technology has acquired a new
dimension from its first generation model, the Apollo guidance computer, to the
latest radio navigation system combined with in-car entertainment technology
and the wearable computing devices (Apple watch, Microsoft Band, Fitbit fitness
trackers etc.). The application areas and the products in the embedded domain are countless. A few of the
important domains and products are listed below:

(1) Consumer electronics: Camcorders, cameras, etc.

(2) Household appliances: Television, DVD players, washing machine, fridge, microwave oven, etc.

(3) Home antomation and security systems: Air conditioners, sprinklers, intruder detection alarms, closed

circuit television cameras, fire alarms, etc.
(4) Awromorive indusiry: Anti-lock breaking systems (ABS), engine control, ignition systems, automatic
navigation systems, efc.

(5) Telecom: Cellular telephones, telephone switches, handset multimedia applications, etc.

(6) Computer peripherals: Printers, scanners, fax machines, etc.

(7) Computer networking svstems: Network routers, switches, hubs, firewalls, etc.

(8) Healthcare: Different kinds of scanners, EEG, ECG machines etc.

{9) Measurement & Instrumentation: Digital multimeters, digital CROs, logic analysers PLC systems, etc.
(107 Banking & Retad: Automatic teller machines (ATM) and currency counters, point of sales (POS)
(11 Card Readers: Barcode, smart card readers, hand held devices, etc.
(12) Wearable Devices: Health and Fitness Trackers, Smartphone Screen extension for notifications, etc.
(13) Cloud Computing and Internet of Things (I0T)

LO 5 Explain the
domains and areas
of applications of
embedded systems

2.2.2.1 Static RAM [SRAM) Static RAM stores data in the form of voltage. They are made up of flip-
flops. Static RAM is the fastest form of RAM available. In typical implementation, an SRAM cell (bit) is
realised using six transistors (or 6 MOSFETs). Four of the transistors are used for building the latch (flip-
flop) part of the memory cell and two for controlling the access. SRAM is fast in operation due to its resistive
networking and switching capabilities. In its simplest representation an SRAM cell can be visualised as
shown in Fig. 2.10.

-

Bit Line B\ | ~ Bit Line B
Qlljl; ﬂa |03
'\ —1 f.-'l e

”
"

o

Q5 kg\ :: "\J'—'U' 1': (813
S

. : —;
,/r Veo ﬂ; JII o
1

Fig. 210 SRAM cell implementation

I

o

(111}

Word Line

This implementation in its simpler form can be visualised as two-cross coupled inverters with read/write
control through transistors. The four transistors in the middle form the cross-coupled inverters. This can be

visualised as shown in Fig. 2.11.

From the SRAM implementation diagram, it is
clear that access to the memory cell is controlled
by the line Word Line, which controls the access
transistors (MOSFETs) Q35 and Q6. The access
transistors control the connection to bit lines B & B
In order to write a value to the memory cell, apply the
desired value to the bit control lines (For writing 1,
make B = | and B\ =0; For writing 0, make B =0 and
By =1} and assert the Word Line (Make Word line

Write control Read control

Data
read

Data to
write

-

Visualisation of SRAM cell

Fig. 21

high). This operation latches the bit written in the flip-flop. For reading the content of the memory cell, assert

both B and BY bit lines to 1 and set the Word line to 1.

The major limitations of SRAM are low capacity and high cost. Since a minimum of six transistors
are required to build a single memory cell, imagine how many memory cells we can fabricate on a silicon

wafer.

2.2.2.2 Dynamic RAM (DRAM)

Dynamic RAM stores data in the

Bit line B

form of charge. They are made up of MOS transistor gates. The advantages
of DRAM are its high density and low cost compared to SRAM. The
disadvantage is that since the information is stored as charge it gets leaked

off with time and to prevent this they need to be refreshed periodically.

Word line

Special circuits called DRAM controllers are used for the refreshing

operation. The refresh operation is done periodically in milliseconds
interval. Figure 2.12 illustrates the typical implementation of a DRAM

cell.

The MOSFET acts as the gate for the incoming and outgoing data
whereas the capacitor acts as the bit storage unit. Table given below

T

Fig. 212 DRAM cell implementation

summarises the relative merits and demerits of SRAM and DRAM

technology.

SRAM cell
Made up of 6 CMOS transistors (MOSFET)
Doesn't require refreshing
Low capacity (Less dense)
More expensive

Fast in operation. Typical access time is 10ns

DRAM cell

Made up of a MOSFET and a capacitor
Requires refreshing

High capacity (Highly dense)

Less expensive

Slow in operation due to refresh requirements. Typical access

time is 6ikns. Write operation is faster than read operation.

Harvard Architecture
Separate buses for instruction and data fetching
Easier to pipeline. so high performance can be achieved
Comparatively high cost
Mo memory alignment problems

Since data memory and program memory are stored
physically in different locations, no chances for accidental
corruption of program memory

¥Yon-Neumann Architecture
Single shared bus for instruction and data fetching
Low performance compared to Harvard architecture
Cheaper
Allows self modifying codes”

Since data memory and program memory are stored
physically in the same chip, chances for accidental
corruption of program memory

2.1.1.8 Big-Endian vs. Little-Endian Processors/Controllers Endianness specifies the order in which
the data is stored in the memory by processor operations in a multibyte system (Processors whose word size
is greater than one byte). Suppose the word length is two byte then data can be stored in memory in two
different ways:
(1) Higher order of data byte at the higher memory and lower order of data byte at location just below the
higher memory.
{2) Lower order of data byte at the higher memory and higher order of data byte at location just below the
higher memory.

Little-endian Little-endian (Fig. 2.3) means the lower-order byte of the data is stored in memory at the
lowest address, and the higher-order byte at the highest address. (The little end comes first.) For example, a 4
byte long integer Byte3 Byte2 Bytel ByteD will be stored in the memory as shown below:

Basc Address + 0 Byte 0 Byte 0 020000 (Base Address)

Base Address + 1 Byte 1 Byte 1 020001 (Base Address + 1)
Base Address + 2 Byte 2 Byte 2 020002 (Base Address + 2)
Base Address + 3 Byte 3 Byte 3 020003 (Base Address + 3)

Fig. 23 Little-Endian operation

Big-endian Big-endian (Fig. 2.4) means the higher-order byte of the data is stored in memory at the lowest
address, and the lower-order byte at the highest address. (The big end comes first.) For example. a 4 byte long
integer Byte3 Byte2 Bytel Byte0 will be stored in the memory as follows®:

Base Address + 0 Byte 3 Byte 3 0x20000 (Base Address)

Base Address + 1 Byte 2 Byte 2 0x20001 (Base Address + 1)
Base Address +2 Byte 1 Byte 1 020002 (Base Address + 2)
Base Address +3 Byte 0 Byte 0 0x20003 (Base Address + 3)

Fig. 24 Big-Endian operation

2.4.1.3 Universal Asynchronous Receiver Transmitter (UART) Universal Asynchronous Receiver
Transmitter (UART) based data transmission is an asynchronous form of serial data transmission. UART
based serial data transmission doesn’t require a clock signal to synchronise the transmirtting end and receiving
end for transmission. Instead it relies upon the pre-defined agreement between the transmitting device and
receiving device. The serial communication settings (Baudrate, number of bits per byte, parity, number of
start bits and stop bit and flow control) for both transmitter and receiver should be set as identical. The start
and stop of communication is indicated through inserting special bits in the data stream. While sending a byte
of data, a start bit is added first and a stop bit is added at the end of the bit stream. The least significant bit of
the data byte follows the “start” bit.

The “start’ bit informs the receiver that a data byte is about to arrive. The receiver device starts polling its
‘receive line’ as per the baudrate settings. If the baudrate is “x" bits per second, the time slot available for one
bit is 1/x seconds. The receiver unit polls the receiver line at exactly half of the time slot available for the bit.
If parity is enabled for communication, the UART of the transmitting device adds a parity bit (bit value is 1
for odd number of 1s in the transmitted bit stream and 0 for even number of 1s). The UART of the receiving
device calculates the parity of the bits received and compares it with the received parity bit for error checking.
The UART of the receiving device discards the *Start’, *Stop” and ‘“Parity” bit from the received bit stream
and converts the received serial bit data to a word (In the case of 8 bits/byte, the byte is formed with the
received 8 bits with the first received bit as the LSB and last received data bit as MSB).

For proper communication, the *Transmit line” of the sending device should be connected to the ‘Receive
line" of the receiving device. Figure 2.28 illustrates the same.

UART XD X XD UART
RXD

TXD: Transmitter line
RXD: Receiver line

Fig. 228 UART Interfacing

In addition to the serial data transmission function, UART provides hardware handshaking signal support
for controlling the serial data flow. UART chips are available from different semiconductor manufacturers.
National Semiconductor's 8250 UART chip is considered as the standard setting UART. It was vused in the
original IBM PC.

Mowadays most of the microprocessors/controllers are available with integrated UART functionality and
they provide built-in instruction support for serial data transmission and reception.

2.4.1.4 1-Wire Interface |-wire interface is an asynchronous half-duplex communication protocol
developed by Maxim Dallas Semiconductor (http:/fwww.maxim-ic.com). It is also known as Dallas 1-Wire®
protocol. It makes use of only a single signal line (wire) called DQ for communication and follows the
master-slave communication model. One of the key feature of 1-wire bus is that it allows power to be sent
along the signal wire as well. The 1-Wire slave devices incorporate internal capacitor (typically of the order
of 800 pF) to power the device from the signal line. The 1-wire interface supports a single master and one
or more slave devices on the bus. The bus interface diagram shown in Fig. 2.29 illustrates the connection of
master and slave devices on the 1-wire bus.

Ve
47K
: Do Slave 1
Port
ot pin l-wire device
GND (e.z.: DS2762 Battery

monitor [C)
Master !
(Microprocessor!

Controller) DO T
l-wire device
i (e.g.: DS2431 1024
GND GND Bit EEFROM)

It

Fig. 229 1-Wire Interface bus

ARM
L —[Memory controller]
[_[ntarrupt cnnlrulIErJ {AHB-exlemal hriﬂge]—

AHB arbiter
AHB-APB bridge |

—| Counterflimers
Console ——| Serial UARTs

[ARM] [Cnnuaum] [Periphera]:«;] Bus

ROM
SEAM
FLASHROM

DEAM

External bus

Ethernet I
Real-time clock —{ﬁi Ethernet

physical
driver

Figure 1.2 An example of an ARM-based embedded device, a microcontroller.

Figure 1.2 shows a typical embedded device based on an ARM core. Each box represents

a feature or function. The lines connecting the boxes are the buses carrying data. We can
separate the device into four main hardware components:

The ARM processor controls the embedded device. Different versions of the ARM pro-
cessor are available to suit the desired operating characteristics. An ARM processor
comprises a core (the execution engine that processes instructions and manipulates
data) plus the surrounding components that interface it with a bus. These components
can include memory management and caches.

Controllers coordinate important functional blocks of the system. Two commonly
found controllers are interrupt and memory controllers.

The peripherals provide all the input-output capability external to the chip and are
responsible for the uniqueness of the embedded device.

A busis used to communicate between different parts of the device.

1.3.1 ARM Bus TECHNOLOGY

Embedded systems use different bus technologies than those designed for xis PCs. The most
commen PC bus technology, the Peripheral Component Interconnect (PCL) bus, connects
such devices as video cards and hard disk controllers to the <88 processor bus. This type
of technology i external or off-chip (ie., the bus is designed to connect mechanically and
electrically to devices external to the chiph and is bualt into tee motherboard of a FC

In contrast, embedded devices wse an on-chip bus that is internal to the chip and that
allows different peripheral devices to be interconnected with an ARM core.

There are vwo different clasies of devices attached to the bus. The ARM processor core is
a buis mnster—a logical device capable of imitiating a data wransfer with another device across
the same bus. Peripherals tend 1o be s shives—logical devices capable only of responding
Lo transfer request from a bus master device.

A bus has two architecture levels. The first is a physical level that covers the electrical
characteristics and bus width {16, 32, or 84 bits). The second level deals with proacol—the
lergical rules that govern the communication berween the processer and a perpheral.

AEM is primarily a design company. 1t seldom implements the electrical characteristics
of the bus, but it routinely specifies the bus protocel.

1.3.2 AMBA Bus ProTOCOL

The Advanced Microcontroller Bus Architecture {AMBA) was introduced in 1996 and has
been widely adopted as the on-chip bus architecture used for ARM processors. The firs
AMBEA buses introduced were the ARM System Bus [ASB) and the ARM Peripheral Bus
(APFB). Later ARM introduced another bus design, called the ARM High Performance Bus
(AHE). Using AMBA, peripheral designers can reuse the same design on multiple prajects.
Because there are a large number of peripherals developed with an AMBA interface, hard-
ware designers have a wide choice of tested and proven penipherals for wse in a device.
A peripheral can simply be bolted onio the on-chip bus without having to redesign an inter-
face for each different processor architecture. This plug-and-play interface for hardware
developers improves availability and tieme 1o market.

AHE provides higher data throughput than ASE because it 15 based on a centralized
il pleved bus scheme rather thai the ASE bidirectional bus design. This chainge allows
the AHE bus o run at higher clock speeds and to be the first ARM bus 1o support widths
of 64 and 128 bits. ARM has intreduced two variations on the AHB bus: Multi-layer AHB
anad AHB-Lite. o contrast to the onginal AHE, which allows a single bus master 1o be
active on the bus at any tie, the Multi-layer AHB buis allows muiltiple active bus imasters.
AHE-Lite 15 a subset of the AHE bus and it s limated 1o a single bus master. This bus was
developed for designs that de aet requive the full features of the standard AHB bus.

AHE and Multi-layer AHB support the same protocol for master and slave but have
different interconnects. The new imerconnects in Multi-laves AHE ase good for svstems
with multiple processora, They permit operations to accur in parallel and allow for higher
throughput rates.

Dt

_‘f‘ I .-Iusl;mctian

decoder
Sign extend
Write Read
i
rl3 Register file Rd
P IS Result
R | A Remr | B
A | BlAce
1 Y1y

Bairel shifter
MAC

Adidress

Figure 2.1 ARM core dataflow model.

Data enters the processor core through the Data bus. The data may be an instruction to
execute or a data item. Figure 2.1 shows a Von Neumann implementation of the ARM-—
data items and instructions share the same bus. In contrast, Harvard implementations of
the ARM use two different buses.

The instruction decoder translates instructions before they are executed. Each
instruction executed belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses a load-store architecture. This
means it has two instruction types for transterring data in and out of the processor: load
instructions copy data from memory to registers in the core, and conversely the store

instructions copy data from registers to memory. There are no data processing instructions
that directly manipulate data in memory. Thus, data processing is carried out solely in
registers.

Diata items are placed in the register file—a storage bank made up of 32-bit registers.
Since the ARM core is a 32-bit processor, most instructions treat the registers as holding
signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit
numbers to 32-hit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rimand R, and a single result or
destination register, Rd. Source operands are read from the register file using the internal
buses A and B, respectively.

The ALU {arithmetic logic unit) or MAC (multiply-accumulate unit) takes the regis-
ter values Rn and REm from the A and B buses and computes a result. Data processing
instructions write the result in Rd directly to the register file. Load and store instructions
use the AL to generate an address to be held in the address register and broadcast on the
Address bus.

One important feature of the ARM is that register R alternatively can be preprocessed
in the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can
calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register
file using the Resultbus. For load and store instructions the incrementer updates the address
register before the core reads or writes the next register value from or to the next sequential
memory location. The processor continues executing instructions until an exception or
interrupt changes the normal execution flow.

Mow that vou have an overview of the processor core we'll take a more detailed look
at some of the key components of the processor: the registers, the current program status
register {gpsr), and the pipeline.

FrocEssOoR MODES

The processor mode determines which registers are active and the access rights to the cpsr
register itself. Each processor mode is either privileged or nonprivileged: A privileged mode
allows full read-write access to the cpsr. Conversely, a nonprivileged mode only allows read
access to the control field in the cpsrbut still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes {abort, fast interrupt
request, interrupt request, supervisor, system, and wndefined) and one nonprivileged mode
{ser).

The processor enters abort mode when there is a failed attempt to access memory. Fast
interrupt request and interrupt request modes correspond to the two interrupt levels available
on the ARM processor. Supervizor mode is the mode that the processor is in after reset and
is generally the mode that an operating system: kernel operates in. Systesn mode is a special
version of user mode that allows full read-write access to the cpsr. Undefined mode is used
when the processor encounters an instruction that is undefined or not supported by the
implementation. User mode is used for programs and applications.

Processor mode.

Mode Abbreviation Privileged Maode[4:0]
Abort abt ves 10111
Fast interrupt request fig ves 10001
Intervupt request irq ves 10010
Supervisor SWC ves 10011
System SVs ves 11111
Undefined und ves 11011
User usr no 10000

