21MATCS41

## Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mathematical Foundations for Computing, Probability and **Statistics**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

a. Define tautology. Determine whether the following compound statement is a tautology or

$$[(p \lor q) \to r] \leftrightarrow [\sim r \to \sim (p \lor q)]$$

(06 Marks)

b. Prove the following using the laws of logic

$$[\sim p \land (\sim q \land r)] \lor [(q \land r) \lor (p \land r)] \Leftrightarrow r$$

(07 Marks)

c. Give direct proof and proof by contradiction for the statement "If n is an odd integer then n + q is an even integer". (07 Marks)

- Define: i) Open Statement ii) Quantifiers.

(06 Marks)

(07 Marks)

b. Test the validity of the arguments using rules of inference

$$p \to (q \to r)$$

$$p \lor \sim s$$

$$\frac{q}{\therefore s \to r}$$

- c. If  $p(x) : x \ge 0$ ,  $q(x) : x^2 \ge 0$ ,  $r(x) : x^2$ -3x-4=0,  $s(x): x^2-3>0$ . Determine the truth or falsity of the following statement:
  - $\exists x [p(x) \land q(x)]$
  - $\forall x [p(x) \rightarrow q(x)]$
  - $\forall x [q(x) \rightarrow s(x)]$
  - $\forall x [r(x) \land s(x)]$
  - $\exists x [p(x) \land r(x)]$
  - vi)  $\forall x [r(x) \rightarrow p(x)]$
  - vii)  $\exists x[r(x) \rightarrow \sim p(x)]$

(07 Marks)

#### Module-2

- 3 a. Let f and g be functions from R to R defined by f(x) = ax + b and  $g(x) = 1 x + x^2$  if (gof) (x) =  $9x^2 - 9x + 3$ . Determine a and b. (06 Marks)
  - b. Let  $A = \{1, 2, 3, 4\}$  and let R be the relation on A defined by xRy if and only if "x divides y" write down the relation R, relation matrix  $M_R$  and draw its diagraph. (07 Marks)
  - c. Prove that in every graph the number of vertices of odd degree is even. (07 Marks) 1 of 4

OR

a. Draw the Hasse diagram of the relation R on  $A = \{1, 2, 3, 4, 5\}$  whose matrix is as given

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(06 Marks)

b. Consider the function  $f: R \to R$  defined by f(x) = 2x + 5. Let a function  $g: R \to R$  be defined by  $g(x) = \frac{1}{2}(x-5)$ . Prove that g is an inverse of f.

c. Define graph isomorphism. Determine whether the following graphs are isomorphic or not.





Module-3

5 a. Calculate the coefficient of correlation and obtain the lines of regression for the following data:

| X | 1 | 2 | 3  | 4  | 5  | 6  | 7  |
|---|---|---|----|----|----|----|----|
| у | 9 | 8 | 10 | 12 | 11 | 13 | 14 |

(06 Marks)

b. Fit a straight line in the least square sense for the following data:

| y 16 19 23 26 30 |
|------------------|
|                  |

Fit a curve  $y = ax^b$  for the following data:

| VV | 1115 | uata. | - Contraction |     | 700 |      |
|----|------|-------|---------------|-----|-----|------|
|    | X    | 100   | 2             | 3   | 4   | 5    |
|    | y    | 0.5   | 2             | 4.5 | 8   | 12.5 |

(07 Marks)

OR

The following are the percentage of marks in mathematics (x) and statistics (y) of nine students. Calculate the rank correlation coefficient.

|   |    |    |    |    |    |    |    | 46 |    |
|---|----|----|----|----|----|----|----|----|----|
| у | 41 | 64 | 70 | 75 | 44 | 55 | 62 | 56 | 60 |

(06 Marks)

b. Fit a parabola  $y = ax^2 + bx + c$  for the data

| X | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
|---|-----|-----|-----|-----|-----|-----|-----|
| у | 1.1 | 1.3 | 1.6 | 2.0 | 2.7 | 3.4 | 4.1 |

(07 Marks)

c. With usual notation, compute means  $\bar{x}$ ,  $\bar{y}$  and correlation coefficient r from the following lines of regression, 2x + 3y + 1 = 0, x + 6y - 4 = 0. (07 Marks)

7 a. A random variable X has the following probability function:

| x (  | 0 | 1 | 2  | 3  | 4  | 5              | 6      | 7          |
|------|---|---|----|----|----|----------------|--------|------------|
| p(x) | 0 | k | 2k | 2k | 3k | k <sup>2</sup> | $2k^2$ | $7k^2 + k$ |

Find k, and evaluate p(x < 6),  $p(x \ge 6)$ , p(0 < x < 5)

(06 Marks)

b. Find the mean and S.D of binomial distribution.

(07 Marks)

c. The marks of 1000 students in an examination follows a normal distribution with mean 70 and S.D. 5. Find the number of students whose marks will be i) less than 65 ii) more than 75 iii) between 65 and 75 ( $\phi(1) = 0.3413$ ). (07 Marks)

# BANGALORE - 560 037

- $kx^{2}$ , 0 < x < 38 a. Find the constant for such that f(x) =is a p.d.f. Also compute otherwise  $p(1 < x < 2), p(x \le 1), p(x > 1).$ (06 Marks)
  - b. A shop has 4 diesel generator sets which it hires every day. The demand for a genset on an average is a poisson variate with value 5/2. Obtain the probability that on a particular day i) there was no demand ii) A demand had to be refused. (07 Marks)
  - c. In a normal distribution 31% of the iterms are under 45 and 8% of the items are over 64. Find the mean and S.D of the distribution: (p(0.5) = 0.19, p(1.4) = 0.42)(07 Marks)

The joint distribution of two random variables x and y is as follows:

| x/y | 3    | 4    | 5    |
|-----|------|------|------|
| 2   | 1/6  | 1/6  | 1/6  |
| 5   | 1/12 | 1/12 | 1/12 |
| 7   | 1/12 | 1/12 | 1/12 |

Compute i) E(x) and E(y)variables?

ii) E(xy)

iii) Cov (x, y). Are they independent random

(06 Marks)

3 of 4

- b. A coin was tossed 400 times and head turned up 216 times. Test the hypothesis that the coin is unbiased at 5% level of significance.
- c. In experiments on pea breeding, the following frequencies of seeds were obtained:

| Round and<br>Yellow | Wrinkled and<br>Yellow | Round and Green | Wrinkled and Green | Total |
|---------------------|------------------------|-----------------|--------------------|-------|
| 315                 | 101                    | 108             | 32                 | 556   |

Theory predicts that the frequencies should be in proportions 9:3:3:1. Examine the correspondence between theory and experiment  $(\psi_{0.05}^2 = 7.815 \text{ for } 3 \text{ df})$ (07 Marks)

### CMRIT LURARY

BANGALORE - 560 037

10 a. Explain the terms:

Null hypothesis

Significance level Type I and Type II errors

(06 Marks)

- b. The mean life of 100 fluorescent tube lights manufactured by a company is found to be 1570 hrs with a S.D of 120 hrs. Test the hypothesis that the mean life time of the lights produced by the company is 1600 hrs at 0.01 level of significance. (07 Marks)
- c. The nine items of a sample have the following values: 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these differ significantly from the assumed mean of 47.5?  $(t_{0.05} = 2.31 \text{ for } 8 \text{ d.f})$ . (07 Marks)