USN CONTROL OF THE CO

Sixth Semester B.E. Degree Examination, Dec.2024/Jan.2025

System Software and Compilers

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define System Software. Distinguish between system software and application software.

 (06 Marks)
 - b. Explain SIC/XE architecture (08 Marks)
 - c. Write an algorithm for pass 2 assembler of SIC assembler. (06 Marks)

OR

- 2 a. Explain the data structure and pass 1 algorithm of SIC assembler. (08 Marks)
 - b. List all assembler independent and dependent features and explain program relocation.

 (06 Marks)
 - c. What is loader? What are the basic functions the loader has to perform? (06 Marks)

Module-2

3 a. What is compiler? Explain various phases of compiler with the help of neat diagram.

(10 Marks)

- b. Explain the concept of input buffering with sentinels in the lexical analysis. (06 Marks)
- c. List the formal definitions of operations on languages with notations. (04 Marks)

OR

- 4 a. Write the regular definition using extended regular expression notation and also draw the transition diagram to recognize the following tokens:

 (i) Identifier

 (ii) Unsigned

 (10 Marks)
 - (i) Identifier (ii) Unsigned
 - b. Explain three types of software productivity tools. (05 Marks)
 c. Enlist algebraic laws for regular expressions. (05 Marks)

Module-3

- 5 a. Define left-recursion grammar, also write an algorithm to eliminate left recursion from a grammar. (05 Marks)
 - b. How to verify whether grammar is LL(1) or not? Show that:

 $S \rightarrow AaAb \mid BbBa$

 $A \rightarrow E$

 $B \rightarrow E$

is LL(1), without constructing any table.

(10 Marks)

c. For the grammar $A \rightarrow (A) \mid a$, construct LR(0) set of items

(05 Marks)

OR

a. Explain the working of shift reduce parser. Parse the input string id * id using the grammar.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F | F$$

$$F \rightarrow (E) \mid id$$

(08 Marks)

b. With a diagram, explain the model of an LR parser.

(04 Marks)

c. For the given grammar $E \rightarrow E + n/n$ construct parsing table of LL(1). Verify 3+4+7 and show each step of verification with reference to parsing table. (08 Marks)

Module-4

Explain the structure of LEX program, with an example.

(06 Marks)

Write a LEX program for the tokens given below:

Lexemes	Token Name	Attribute value
Any WS		-
if	if	- 1
then	then	
else 🗸 🄌	else	(3 ^y
Any id	id	Ptr to table entry
Any number	number	Ptr to table entry
- X - 1	relop	LT
<=	relop	LE
=	relop 🧳	EQ 👠
<>	relop	NE NE
>	relop	GT OF
>=	relop	GE

(10 Marks)

c. Write a LEX program to count the number of vowels and consonants in a given input string. (04 Marks)

OR

- List and explain with an example the different wildcard characters used in LEX. (08 Marks)
 - Write a YACC program to evaluate the arithmetic expression. (06 Marks)
 - (06 Marks) Explain the structure of YACC program. CMRIT LIBRARY BANGALORE - 560 037

Module-5

- Write annotated parse tree for 3 * 5 + 4n using top down approach. Write semantic rules for (10 Marks) each step.
 - b. Define (i) Synthesized attribute (ii) Inherited attribute. (06 Marks)
 - (04 Marks) Explain the concept of syntax directed definition.

OR

Construct DAG and three address code for the following expression: 10

$$a + a * (b - c) + (b - c) * d$$

(04 Marks)

b. Explain the following with an example:

- i) quadruples ii) triples

(08 Marks)

c. Discuss the various issues in the design of a code generator.

(08 Marks)