(06 Marks)

(07 Marks)

(07 Marks)

(20 Marks)

Time School

18CS54

Fifth Semester B.E. Degree Examination, Dec.2024/Jan.2025 Automata Theory and Computability

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define the following with example: i) Alphabet ii) Power of an alphabet iii) String and length of string iv) Concatination v) Language. (10 Marks)
 - b. Define DFSM. Design a DFSM to accept each of the following languages:

 $L = \{W : |W| \mod 3 = 0\} \text{ where } \Sigma = \{a\}$

 $L = \{W \in \{a, b\}: W \text{ Ending with abb }\}$

(10 Marks)

OR

- 2 a. Define NDFSM. Design an NFA to recognize the following set of string: [0101, 101, 011].
 (06 Marks)
 - b. Design an NFA to obtain string of a and b ending with ab (or) ba, convert it into its equivalent DFA. (08 Marks)
 - c. Differentiate between DFA, NFA and ∈NFA.

(06 Marks)

Module-2

- 3 a. Define regular expression, write the regular expression for the following languages:
 - i) $\{W \in \{0,1\}^* | W | \text{ is even}\}$
 - ii) $\{W \in \{0,1\}^* \text{ has } 001 \text{ as substring } \}$
 - iii) $\{W \in \{a,b\}^* \text{ whose second symbol from right end is a} \}$
 - iv) $\{W \in \{a, b\}^* \text{ starting with 'a' and ending with b}\}$

(06 Marks)

- b. Show that every regular expression there is an equivalent FSM.
- (06 Marks)

- c. Construct FSM for the regular expression
 - i) $a^* + b^* + c^*$
- ii) $(a + b)^*$ aa $(a + b)^*$

(08 Marks)

OI

- 4 a. State and prove pumping lemma theorem for RL and ST the language $L = \{a^i b^j : i, j \ge 0 \text{ and } i j = 5\}$ is not regular. (12 Marks)
 - b. List the closure properties of regular language. Explain any two of them with example.

(08 Marks)

Module-3

- 5 a. Define context free grammer. Design CFG for the following languages:
 - i) Let $\Sigma = \{a, b\}$ to generate string of even number of a's.
 - ii) $L = \{a^n \cdot b^n \mid n \ge 0\}$
 - iii) To generate string consisting of multiples of three a's.

(10 Marks)

- b. Obtain the grammer to generate the following language:
 - i) $L = \{0^m 1^m 2^n | m \ge 1 \text{ and } n \ge 0\}$
 - ii) $L = \{a^i b^j | i \neq j, i \geq 0 \text{ and } j \geq 0\}$

(10 Marks)

1 of 2

		OR	
5	a.	What is ambiguity? Show that the following grammar is ambiguous	
,	٠	$S \rightarrow AB \mid aaB$	
		$A \rightarrow a \mid Aa$	
		$B \rightarrow b$	(06 Marks)
	b.	Define push down automata. Obtain a PDA to accept the language $L = A^nB^n =$	$\{a^nb^n:n\geq 1\}$
	0.		(08 Marks)
	C.	i) Derive leftmost derivation for the string aaabbabbba using the following gran	nmer
		$S \rightarrow aB \mid bA$	
		$A \rightarrow aS \mid bAA \mid a$	
		$B \rightarrow bS \mid aBB \mid b$	
		ii) Obtain the rightmost derivation for the string id + id * id using	
		$E \rightarrow E + E$	
		$E \rightarrow E * E$	
		$E \rightarrow E - E$	
		$E \rightarrow E/E$	
		$E \rightarrow id$	(06 Marks)
		Module-4	(00 Moules)
7	a.	Define Turing machine model. Explain representation of Turing machine.	(08 Marks)
	b.	Design a Turing machine to accept $L = \{0^n \mid n \mid 2^n \mid n \geq 1\}$	(08 Marks)
	C.	Write a short note on multi tape TM.	(04 Marks)
		OR	(10 Mayles)
8	a.		(10 Marks) (05 Marks)
	b.	Explain the model of linear bound automation.	(05 Marks)
	C.	Explain the working of a Turing machine.	(05 Marks)
		CMRIT LIBRARY BANGALORE - 560 037 Module-5	
9	0	Explain the following with example:	
7	a.	LADIANI INC TONOWING WITH CAUTIPIO.	

a. Explain the following with example:

i) Decidability

ii) Decidable language

iii) Undecidable language.

Explain post correspondence problem.

c. Explain halting problem in TM.

OR

Write a short note on:

- a. Growth rate of function
- b. Classes of P and NP
- c. Ouantum computers
- d. Church-Turing thesis.

* * * * *

2 of 2