USD

Fourth Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Design and Analysis of Algorithm**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define Algorithm. Explain asymptotic notations Big O, Big Omega and Big theta notations 1 with example. (10 Marks)
 - Explain general plan of mathematical analysis of non-recursive algorithms with example.

(10 Marks)

Illustrate mathematical analysis of recursive algorithm for towers of hanoii. 2 (08 Marks) Define time and space complexity. Explain important problem types.

(12 Marks)

Module-2

Write the algorithm for recursive binary search and find efficiency for all three cases. 3 a.

(10 Marks)

Explain divide and conquer technique. Write an algorithm for merge sort.

(10 Marks)

Illustrate the tracing of quick sort algorithm for the following set of numbers: 50, 10, 25, 30, 15, 70, 35, 55

(10 Marks)

b. Explain decrease and conquer technique. Illustrate the topological sorting for the following graph: (10 Marks)

Fig. Q4 (b)

Module-3

- Explain the concept of greedy method. Write a Kruskal's algorithm to find minimum cost 5 spanning tree. (10 Marks)
 - Solve the following single source shortest path problem assuming vertex '1' as the source. b. (10 Marks)

Fig.Q5 (b) 1 of 2

OR

6 a. Sort the given list of numbers using heap sort: 2, 9, 7, 6, 5, 8

(10 Marks)

b. Construct a Huffman tree and resulting code word for the following:

Char	A	В	C	D	E	- 0
Probability	0.5	0.35	0.5	0.1	0.4	0.2

Encode the text DAD. Decode the text whose encode is 1100110110

(10 Marks)

Module-4

a. Explain the concept of dynamic programming. Using Floy'ds algorithm. Solve the all pair shortest problem for the graph whose weight matrix is given below:

$$\begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0 \end{bmatrix}$$

(12 Marks)

b. Write multistage graph algorithm to forward approach.

(08 Marks)

OR

8 a. Write an algorithm for Bellman-Ford algorithm.

(10 Marks)

b. Solve the following instance of Knapsack problem using dynamic programming. Knapsack capacity is 5. (10 Marks)

Item	1 ~	2	3	4
Weight	2	1	3	24
Value	\$12	\$10	\$20	\$15

Module-5

9 a. Explain backtracking method. Illustrate 4-queens problem using backtracking method. And also write another solution.

(10 Marks)

b. Solve subset sum problem for the following example, S = {3, 5, 6, 7} and d = 15. Construct a state space tree.

OR

10 a. Explain branch and bound method. Solve assignment problem for the following:

(10 Marks)

b. With the help of a state space tree, solve following instance of the knapsack problem the FIFO branch and bound method. The knapsack capacity is 15.

Item	1	2	3	4
Weights	2	4	6	9
Values	10	10	12	18

(10 Marks)