

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025

Bigital Design and Computer Organization

Max. Marks: 100

BANGALONE Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

	35 14	Module – 1	M	L	C
Q.1	a.	Determine the complement of the following function:	06	L3	CO1
V.1		(i) $F = xy' + x'y$ (ii) $F = x'yz' + x'y'z$			
-	b.	Describe map method for three variables.	04	L2	COI
	c.	Apply K map technique to simplify the following function:	10	L3	CO1
	C.	(i) $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$			
		(ii) $F(x, y, z) = x'y + yz' + y'z'$			
		OR			
Q.2	a.	Apply K map technique to simplify the function:	06	L3	CO1
Q.Z	a.	F(w, x, y, z) = $\Sigma(1, 3, 7, 11, 15)$ and d(w, x, y, z) = $\Sigma(0, 2, 5)$			
	b.	Determine all the prime implicants for the Boolean function F and also	10	L3	CO1
	D.	determine which are essential $F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$			
		Develop a verilog gate-level description of the circuit shown in Fig.Q2(c).	04	L3	CO1
	c.	Develop a vertiog gate-iever description of the eneutr shown in 115. (22(0)).	٠.	-	
		1 1 mi 2			
		$A \longrightarrow G_{11} \longrightarrow D$			
		B G13			
		C Ga			
		Fig.Q2(c)			
		Module – 2			
Q.3	a.	Explain the combinational circuit design procedure with code conversion	10	L2	CO2
2.0		example.			
	b.	Design a full adder circuit. Also develop data flow verilog model for full	10	L3	CO2
		adder.	N.		
		OR			
Q.4	a.	Describe 4 × 1 MUX with block diagram and truth table. Also develop a	10	L2	CO2
		behavioral model verilog code for 4 × 1 MUX.			
	b.	The second Delate along	10	L2	CO2
		with logic diagram and function table.			
		Module – 3			
Q.5	a.	Explain the basic operational concepts between the processor and memory.	10	L2	CO3
4.0	b.		10	L2	CO3
		(i) Processor clock			
		(ii) Basic performance equation			
		(iii) Clock rate			
		(iv) SPEC rating			
		OR		T = -	1 ~~-
Q.6	a.	Define addressing mode. Explain any four types of addressing mode with	10	L2	CO3
0		example.			
		1 of 2			

=	W. 1981			ВС	CS302
	b.	Mention four types of operations to be performed by instructions in a computer. Explain the basic types of instruction formats to carry out. $C \leftarrow [A] + [B]$	10	L2	CO3
		Module – 4			
Q.7	a.	With a neat diagram, explain the concept of accessing I/O devices.	10	L2	CO4
	b.	What is bus arbitration? Explain centralized and distributed arbitration method with a neat diagram.	10	L2	CO4
4		OR			
Q.8	a.	With neat sketches, explain various methods for handling multiple interrupts requests raised by multiple devices.	10	L2	CO4
	b.	What is cache memory? Explain any two mapping function of cache memory.	10	L2	CO4
		Module – 5			
Q.9	a.	Draw the single bus architecture and write the control sequence for execution of instruction ADD (R ₃), R ₁ .	10	L3	CO5
	b.	With suitable diagram, explain the concept of register transfer and fetching of word from memory.	10	L2	CO5
		OR			
Q.10	a.	With a neat diagram, explain the flow of 4-stage pipeline operation.	10	L2	CO5
	b.	Explain the role of cache memory and pipeline performance. CMRIT LIBRARY	10	L2	CO5

* * * BANGALORE - 560 037