(07 Marks)

21CS33

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 **Analog and Digital Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

	J	M	0	d	u	le	-1
--	---	---	---	---	---	----	----

1	a.	With a neat diagram and mathematical analysis explain fixed bias circuit.	(06 Marks)
		With hysteresis characteristics explain the working of Inverting Schmitt trigger.	(06 Marks)
	c.	Explain current to voltage and voltage to current convertor.	(08 Marks)

OR

2	a.	Discuss Regulated power supply parameters.	(06 Marks)
		Explain the working of R-2R ladder D to A convertor.	(06 Marks)
	c.	Explain successive approximation A to D convertor.	(08 Marks)

Module-2

a. Find all the prime implicates of the function $f(a,b,c,d) = \Pi(0,2,3,4,5,12,13) + \Pi d(8,10)$ using the Quine-McCluskey method.

(10 Marks)

Plot the Karnaugh maps and find all the minimal sums and minimal products of the following Boolean functions.

i) $f(a,b,c) = \sum (2,4,5,6,7)$

ii) $f(a,b,c) = \Pi(1,4,5,6)$.

(10 Marks)

OR

CMRIT LIBRARY

a. With an example, explain Petrik's method.

BANGALORE - 560 037 (06 Marks)

b. For the given Boolean function, determine a minimal sum and a minimal product using MEV techniques using a, b and c as the map variables.

 $f = \sum (3,4,5,7,8,11,12,13,15).$

(08 Marks)

c. Explain entered variable map method.

(06 Marks)

Module-3

Implement the following function using 8:1 multiplexer,

 $F(a,b,c,d) = \sum_{i=1}^{n} m(0, 1, 5, 6, 8, 10, 12, 15).$

(07 Marks)

Implement 7-segment decoder using PLA.

(08 Marks)

Discuss Four kinds of three state buffers.

(05 Marks)

OR

a. Implement Full Adder using 3: 8 Decoder.

(07 Marks)

b. Design Hexadecimal to ASCII code converter using suitable ROM. Give the connection (08 Marks) diagram of ROM.

c. Explain static 1 Hazard with its recover method.

(05 Marks)

c. Explain the working of a 3 bit shift register.

7 a. Explain structure of VHDL program. Write VHDL code for 4 bit parallel adder using full (08 Marks) adder as component. b. Explain the working of SR latch using NOR gates. (06 Marks) (06 Marks) c. Explain edge triggered D flip flop. a. Explain J-K Master slave flip flop with suitable timing diagram. (10 Marks) b. Derive the characteristics equations for D, T, SR and JK flip flops. (10 Marks) CMRIT LIBRARY Module-5 a. With a neat diagram, explain 4-bit parallel adder with accumulator. (10 Marks) Define counter. Design mod-5 counter using J-K flip flop. (10 Marks) OR 10 a. With neat diagram, explain 4 bit SISO register. (08 Marks) (05 Marks) b. Mention the application of shift registers. CR. CR. CR. CR. CR. CR.

Module-4