18EC52

Fifth Semester B.E. Degree Examination, Dec.2024/Jan.2025

Digital Signal Processing

Max. Marks: 100

ofer Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Compute N-point DFT of the following signals:

i)
$$x(n) = a^n$$
, $0 \le n \le N - 1$

ii)
$$x(n) = 1, 0 \le n \le N - 1$$
.

(10 Marks)

(05 Marks)

b. Determine 4-point circular convolution of the sequences.

$$x_1(n) = \{2, 1, 2, 1\}$$
 and $x_2(n) = \{1, 2, 3, 4\}$ using graphical method.

c. Compute the DFT of the sequence defined by $x(n) = (-1)^n$ for i) N = 3 ii) N = 4. (05 Marks)

OR

2 a. Illustrate the following properties of DFT:

i) Linearly

ii) Circular time shift

(10 Marks)

b. Compute the IDFT of 4-point sequence:

 $X(K) = \{4, -j2, 0, J2\}$ using DFT.

(10 Marks)

Module-2

a. Develop radix - 2 decimation - in - time FFT algorithm and write signal flow graph for N = 8.

b. i) Compute the 4-point DFT of the sequence $x(n) = \{1, 0, 1, 0\}$ using DIT FFT radix – 2 algorithm.

ii) Find x(n) for X(K) found in part(i) by DIF FFT algorithm.

(10 Marks)

OR

4 a. Find the o/p y(n) of a filter whose impulse response is h(n) = $\{3, 2, 1, 1\}$ and input $x(n) = \{1, 2, 3, 3, 2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$ using overlap – add method assuming the length of block is 7. (10 Marks)

b. Explain overlap-save method to find the output of the filter.

(10 Marks)

Module-3

5 a. Explain any three window functions to design FIR filters. (10 Marks)

b. A lowpass filter is to be designed with the following desired frequency response

$$H_{d}(e^{jw}) = H_{d}(w) = \begin{cases} e^{-j2w}, & |w| < \frac{\pi}{4} \\ 0, & \frac{\pi}{4} |w| < \pi \end{cases}$$

Determine the filter coefficients $h_d(n)$ and h(n) if w(n) is a rectangular window defined as follows:

$$w_R(n)$$
 $\begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$

Also, find the frequency response, H(w) of the resulting FIR filter.

(10 Marks)

Determine follows: $w_R(n)$ Also, fin

1 of 2

5

Realize the FIR filter whose impulse response is given by

 $h(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2) + \frac{1}{4}\delta(n-3) + \delta(n-4) \; .$

(10 Marks)

b. Consider a three stage FIR Lattice structure having the co-efficient $K_1 = -0.65$, $k_2 = -0.34$ and $k_3 = 0.8$. Realize this filter in direct form.

Module-4

Compare IIR filter with FIR filter.

(10 Marks)

Derive an expression for the order of analog Butterworth prototype low pass filter. (10 Marks)

CMRIT LIBRARY

OR BANGALORE - 560 037

- Design an Buterworth filter for which gain $K_p = 0.5$, $K_s = 0.1$ and passband frequency is 2 rad/sec, stopband frequency is 10 rad/sec. (10 Marks)
 - b. Draw the block diagrams of direct form I realizations for a digital IIR filter described by the system function:

$$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}.$$
 (10 Marks)

- Discuss briefly the following DSP hardware units:
 - i) MAC unit ii) Shifter iii) Address generators.

(10 Marks)

- b. Convert the following decimal numbers into Q 15 representation:
 - i) 0.560123 ii) 0.160123.

(10 Marks)

10 a. Explain briefly the basic architecture of TMS320C54X family processor.

(10 Marks)

- b. Discuss the following IEEE floating point formats
 - i) Single precision format
 - ii) Double precision format.

(10 Marks)