CNFifth Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Principles of Communication Systems**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Explain the generation of amplitude modulated (AM) waves using switching modulator.

- b. With a neat block diagram, explain the working of COSTAS receiver used for demodulation (07 Marks) of DSB-SC singles.
- An audio signal 10 sin 1000 π t volts is used to amplitude modulate a carrier signal 75 sin $(2\pi \times 10^6)$ t. Assume modulation index as 0.5. Find :
 - i) Side band frequencies
 - ii) Amplitude of each side band
 - iii) The bandwidth required
 - iv) The total power delivered to a load of 100Ω .

(05 Marks)

OR

- With a neat block diagram and equations, explain the generation and demodulation of VSB (08 Marks)
- b. Fig.Q2(b) shows the block of an AM system with $s(t) = AC[1 + K_am(t)]cos(2\pi f_ct)$ and $|K_a m(t)| < 1$ for all t. If m(t) is a band limited signal in the interval (-w < f < w) and $f_c > 2w$ show that m(t) can be obtained from the square rooter output.

c. Explain in detail the scheme of FDM.

Module-2

- Derive the equation of FM wave and list the properties of angle modulated waves. (07 Marks)
- Obtain the time domain expression of NBFM wave plot its spectrum and compare with AM (08 Marks) using phasor diagrams.
- c. An angle modulated wave is defined by the equation :
 - $s(t) = 10 \cos[2\pi \times 10^6 t + 5\sin(2000\pi)t + 10\sin(3000\pi)t]$

determine the following:

- i) Power in the modulated signal across a standard 1Ω resistor
- ii) Frequency deviation
- iii)The deviation ratio
- iv)Phase deviation
- v) Transmission bandwidth.

(05 Marks)

OR

- 4 a. With a neat block diagram and necessary equations explain the demodulation of FM waves using non-linear model of phase locked loop (PLL). (08 Marks)
 - Draw the block diagram of super heterodyne receiver from AM reception and explain the (06 Marks) functions of each block.
 - c. An FM signal $s(t) = A_c \cos \left| 2\pi f_c t + 2\pi k_f \right| m(t) dt$ is a applied to a system consisting of RC

high pass filter and envelope detector shown in Fig.Q4(c). Assume R << X_C and envelope detector does not load the filter, determine the envelope detector output assuming $k_f|m(t)| < f_c$ for all t. Comment on the output.

Module-3

Explain thermal noise and white noise.

(06 Marks)

(06 Marks)

18EC53

Define noise equivalent bandwidth and derive the expression for the same. (08 Marks)

- c. An amplifier operating over a frequency 2 range of 450 to 460 KHz is having an input resistance of 10 K Ω . If the temperature is 15°C. Find:
 - i) rms noise voltage at the input of the amplifier
 - ii) the amplifier noise power
 - iii) the power spectral density.

(06 Marks)

- 6 a. Starting from fundamentals, derive the expression for Figure of Merit (FOM) of an AM receiver operating on single tone modulation. (10 Marks)
 - Discuss the noise in FM receivers and obtain the expression for Figure of Merit (FOM) for FM receiver. (10 Marks)

Module-4

Mention the advantages of digitalizing analogy signals.

(04 Marks)

- With relevant equations, state and explain sampling theorem for low pass signals and derive (10 Marks) the interpolation formula.
- With a neat block diagram, explain the generation of Pulse Position Modulation (PPM) CMRIT LIBRARY (06 Marks) signals.

OR BANGALORE - 560 037

a. Mention the few applications of pulse amplitude modulation (PAM).

(04 Marks)

- Consider the signal $x(t) = 5\cos(2000\pi t) + 10\cos(6000\pi t)$

 - i) What is the Nyquist rate and Nyquist interval
 - ii) Assume if the signal is sampled at frequency $f_s = 5000 \text{ Hz}$; what is the resulting signal
 - iii) Draw the spectrum of the sampled signal for $f_s = 5000$ Hz.

(10 Marks)

c. With a neat block diagram, explain Time Division Multiplexing Technique(TDM).(06 Marks)

2 of 3

1 of 3

Module-5

- 9 a. A PCM system uses uniform quantizer followed by a N bit encoder. Show that rms signal to quantization noise is approximately given by $[SNR]_{0dB} = (4.8 + 6N)dB$. (08 Marks)
 - b. Explain the generation and reconstruction of PCM signal. (06 Marks)
 - c. A TV Signal with a bandwidth of 4.2MHz is transmitted using binary PCM. The number of representation levels are 512 calculate:
 - i) Code word length

CMRIT LIBRARY

ii) Final bit rate

BANGALORE - 560 037

iii)Transmission band width.

(06 Marks)

OR

- 10 a. For the bit sequence 10011101 draw unipolar NRZ, polar NRZ, unipolar RZ, bipolar RZ and Manchester encoding formats. (08 Marks)
- with relevant eq.
 am, explain the working of in. b. Explain Delta modulation with relevant equations and waveforms. (06 Marks)
 - (06 Marks)