Third Semester B.E. Degree Examination, Dec.2024/Jan.2025

Engineering Mathematics - III

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series for the function,

 $f(x) = x(2\pi - x)$ over the interval $(0, 2\pi)$ and deduce $\frac{\pi^2}{12} = \sum \frac{(-1)^{n+1}}{n^2}$. (08 Marks)

b. Obtain the constant term and first two coefficients in the Fourier Cosine series for y using the following table:

x: 0 1 2 3 4 5 y: 4 8 15 7 6 2

(08 Marks)

OR

2 a. The following table gives the variation of periodic current over the period T:

t(sec):	0	$\frac{T}{6}$	$\frac{\mathrm{T}}{3}$	$\frac{T}{2}$	$\frac{2T}{3}$	$\frac{5T}{6}$	T
A (amp):	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Show that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of first harmonic. (06 Marks)

b. Find the Fourier series of the function,

$$f(x) = \pi x \qquad 0 \le x \le 1$$

(05 Marks)

 $= \pi(2-x) \quad 1 \le x \le 2$ c. Express f(x) = x as a half range cosine series in 0 < x < 2.

(05 Marks)

Module-2

3 a. Find the Fourier transform of f(x) = 1 - |x|, $|x| \le 1$ and deduce $\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$. (06 Marks)

b. Find the Fourier Cosine transform of

$$f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \\ 0 & x > 2 \end{cases}$$
 (05 Marks)

c. Find z-transform of the following:

(i) $(n+1)^2$

(ii) $\sin(3n+5)$ (05 Marks)

1 of 3

15MAT31

OR

4 a. Obtain Fourier sine transform of $\frac{e^{-ax}}{x}$.

(06 Marks)

b. Find the z-transform of $u_n = 2^n + 3^n n^2 + 6$

(05 Marks)

c. Solve the difference equation, $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using z-transform.

(05 Marks)

Module-3

5 a. Find the coefficient of correlation and equations of lines of regression for the following values of x and y.

X:	1	2	3	4	5
y:	2	5	3	8	7

(06 Marks)

b. Using Newton Raphson method, find the real root of equation $x \log_{10} x - 1.2$. Correct to three decimal places. (05 Marks)

c. Fit a linear law of the form, P = mW + C for the following data:

W:	50	70	100	120
P:	12	15	21	25

(05 Marks)

OR

6 a. Fit a second degree parabolic for the data below,

x:	0	1	2	3	4
y:	1	1.8	1.3	2.5	6.3

(06 Marks)

b. Find the real root of equation $xe^x - \cos x$ that lies between 0.4 and 0.6 by Regular falsi method correct upto three decimal places. (05 Marks)

c. The two regression equations of the variables x and y are x = 19.63 - 0.87y and y = 11.64 - 0.50x. Find (i) Means of x's (ii) Means of y's (iii) Correlation coefficient between x and y. (05 Marks)

Module-4

7 a. Given f(0) = 1, f(1) = 3, f(2) = 7, f(3) = 13. Find f(0.1) using Newton's interpolation formula.

b. Interpolate the value of y at x = 5 using Lagrange's method from the following data:

X:	1	2	3	4	7
v:	2	4	8	16	28

(05 Marks)

(05 Marks)

Evaluate $\int_{1+x^2}^{6} dx$ using Simpson's $\frac{3}{8}$ rule taking step length h = 1.

CMRIT LIBRARY BANGALORE - 560 037 OR

8 a. Construct a polynomial for the data below, by using Newton's divided difference formula:

7	C :	2	4	5	6	8	10
3	y:	10	96	196	350	868	1746

(06 Marks)

b. Evaluate $\int_{0}^{5.2} \log_{e} x dx$, using Weddle's rule taking seven ordinates.

(05 Marks)

2 of 3

c. Find the polynomial f(x) by using Lagrange's interpolation formula for the data:

x:	0	3	4
y:	1	10	21

(05 Marks)

Module-5

- 9 a. Evaluate $\int \vec{f} \cdot d\vec{s}$, given that vector function, $\vec{f} = (3x 2y)i + (y + 2z)j x^2k$, the curve being $x = z^2$, $z = y^2$ from (0, 0, 0) to (1, 1, 1) (06 Marks)
 - b. Derive Euler's equation in the form,

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0.$$

(05 Marks)

c. State Divergence theorem and hence evaluate $\int_{0}^{\infty} div F dV$ for

 $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$. (05 Marks

CMRIT LIBRARY OBANGALORE - 560 037

10 a. Find the curve on which the function, $\int_{0}^{\frac{\pi}{2}} [y^2 - y'^2 - y \sin x] dx$ under the conditions

 $y(0) = y\left(\frac{\pi}{2}\right) = 0$ can be extremized. (06 Marks)

- b. Evaluate $\oint (x^2 2xy) dx + (x^2y + 3) dy$ around the boundary of the region defined by $y^2 = 8x$ and x = 2, using Green's theorem. (05 Marks)
- c. Prove that the shortest distance between two points in a plane is a straight line. (05 Marks)

* * * * *