BEC306C

Mid Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Computer Organization and Architecture

Max. Marks: 100

BANGALORE Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	L	<u>C</u>
Q.1	a.	With neat diagram explain connection between the processor and memory.	10	L1	CO1
	b.	Write the difference between little endian and big endian memory	05	L1	CO ₁
1 2	٠.	assignments.			
	c.	Write a short note on basic performance equation.	05	L1	CO ₁
	<u>. </u>	OR			
Q.2	a.	Describe the concept of branching with an example program of instruction	10	L1	CO ₁
		execution.			
	b.	Represent the following decimal values as signed 7-bit numbers using sign and	05	L2	CO ₁
	٥.	magnitude, signed 1's complement and signed 2's complement formats.			
		- 55, +51, 8, -27, -39, +43, -10, 62			
	c.	Write a short note on memory operations.	05	L1	CO ₁
	C.	Module – 2	and the same of		
Q.3	a.	What is an addressing mode? Explain any four types of addressing modes,	10	L1	CO ₂
Q.5	a.	with suitable example.			
	b.	Write a program to compute the sum of test scores of all the students in the	10	L2	CO ₂
48	υ.	three tests. Store the corresponding sums in memory.			
		OR	tre		=2
0.4		Explain the Rotate and Shift instructions with an example.	10	L1	CO2
Q.4	a.	Define subroutine. Explain subroutine linkage using a link register.	05	L1	CO2
	b.	What are assembler directives? Explain any two directives.	05	L1	CO2
	c.	Module – 3			
0.5		Define I/O interface? Explain I/O interface to connect an input device to the	10	L1	CO3
Q.5	a.				
		bus with neat diagram. What is interrupt? Discuss interrupt I/O method for data transfer.	05	L1	CO3
	b.	What is interrupt? Discuss interrupt 1/0 method for data transfer.	05	L1	CO3
	c.	Describe two methods of handling multiple devices.	00		
		OR CDMA as strollers in a computer system with neat diagram	10	L1	CO3
Q.6	a.	Explain the use of DMA controllers in a computer system with neat diagram.	10	L1	CO3
	b.	Write a note on Bus Arbitration.	10		
	· ·	Module – 4	10	L1	CO
Q.7	a.	Explain the organization of 1K×1 memory chip.	+	L1	CO
	b.		10	LI	CO
		OR	10	1 1	CO
Q.8	a.	Explain the Magnetic disk principles.	10	L1	CO
	b.	Draw and explain the internal organization of 2M×8 asynchronous DRAM	10	L2	CO
		chip.			
		Module – 5	110	Y 1	
Q.9	a.	Discuss with neat diagram the single bus organization of data path inside a	10	L1	CO
,		processor.			00
	b.	What are the actions required to execute a complete instruction	10	L1	CO
		ADD (R ₂), R ₁			
		OR -	T	1	166
Q.10	a.	Draw and explain multiple bus organization of CPU.	10	L1	CO
V.10	b.	Draw and explain organization of the control unit to allow conditional	10	L1	CO
	~.	branching in the microprogram. CMRIT LIBRARY			