BCV401

ester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 **Analysis of Structures**

Max. Marks: 100

Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module - 1	M	L	C
Q.1	a.	Differentiate between statically determinate and indeterminate beams with an example for each.	08	L1	CO1
	b.	Determine the forces in all the members of the truss as shown in Fig.Q1(b). Use the method of joints. 30KN Fig.Q1(b)	12	L3	CO1
		OR			
0.2	1		03	L1	CO1
Q.2	a. b.	Define equilibrium and compatibility conditions. Determine static and kinematic indeterminacy for the following shown in	08	L2	COI
		Fig.Q2(b). Fig.Q2(b) Fig.Q2(b)	09	L3	CO1
	c.	Determine the support reactions and the forces in members EF, BC and BF for the truss shown in Fig.Q2(c) by method of section. 20km 10km Fig.Q2(c)	09	L3	COI

- 1		Madula 2			
0.2		Module – 2 State and explain Mohr's theorems.	06	L1	CO ₂
Q.3	a.	Determine the slope and deflection at free end of cantilever by using	14	L3	CO2
	b.	moment area method. [Refer Fig.Q3(b)]	1.	Lo	001
		126KH	1-3		
		NA VB	1-1-		7
		(27)			13/3
		2m 2m			
		Fig.Q3(b)			
		OR)	08	L1	CO2
Q.4	a.	Derive the expression for strain energy due to bending.		L3	CO2
	b.	Determine the horizontal and vertical deflection at the free end of bracket	12	LS	CO2
		shown in Fig.Q4(b).			
		B 72 V			
					50
		(1)			
		2 - min			
		Fig.Q4(b)	-		
		Module – 3			
Q.5	a.	Show that the parabolic shape is a funicular shape for a three hinged arch	08	L2	CO3
Q.C		subjected to UDL over its entire span.			
	b.	A three hinged parabolic arch of span 20 m and a central rise of 5 m carry a	12	L3	CO3
		point load of 200 kN at 6 m from the left support. Find the support			
		reactions at A and B. Calculate normal thrust and radial shear at 6 m from			
		the left support. Also draw the BMD. Refer Fig.Q5(b).			
		1.6m 1200 KM			
		5m			
		AC 20m - 18 1		9	
				35.4	
		Fig.Q5(b)			
		OR			
Q.6	a.	Derive the equation for cable profile and tension in the cable when it is	08	L2	CO
Q.0	-	supported at the same level and subjected to horizontal UDL.			
	b.	A cable of span 120 m and central dip 4 m carries a UDL of 20 kN/m.	12	L3	CO3
		Determine			
		(i) The maximum and minimum tension in the cable and its inclination			
		(ii) Length of cable	148		
		(iii) The size of cable if the permissible stress is 200 N/mm ² .			
		Module – 4			
Q.7		Analyze the continuous beam shown in Fig.Q7 by slope deflection method.	20	L2	CO
		Draw BMD and SFD.			
		175KM 15KM/m 15KM			
		Al + Brance +D			
	1	6m 14m 8 8m 18 2.5m 1 CONTOCT 1 121	AR	•	
		BANGALORE -	60 03	7	
		Fig.Q7			

	OR			
a.	Explain fixed end moments for different loading and support conditions with relevant diagrams.	05	L1	CO ₄
b.	Analyse the given frame as shown in Fig.Q8(b) by slope deflection method. EI is constant for all the members. Draw BMD and Elastic curve.	15	L4	CO4
	Fig.Q8(b)			
	Module – 5			The state of the s
	method and draw the BM diagram. The support B sinks by 9 mm. Take $EI = 1 \times 10^{12} \text{ N-mm}^2$.	20	L4	CO5
	Fig.Q9			
	OP			
		20	IA	CO5
	draw the BMD. Assume EI constant.			
		a. Explain fixed end moments for different loading and support conditions with relevant diagrams. b. Analyse the given frame as shown in Fig.Q8(b) by slope deflection method. El is constant for all the members. Draw BMD and Elastic curve. Fig.Q8(b) Module - 5 Analyse the continuous beam as shown in Fig.Q9 by moment distribution method and draw the BM diagram. The support B sinks by 9 mm. Take El = 1×10 ¹² N-mm². OR Analyse the frame shown in Fig.Q10 by moment distribution method and draw the BMD. Assume El constant.	a. Explain fixed end moments for different loading and support conditions with relevant diagrams. b. Analyse the given frame as shown in Fig.Q8(b) by slope deflection method. EI is constant for all the members. Draw BMD and Elastic curve.	a. Explain fixed end moments for different loading and support conditions with relevant diagrams. b. Analyse the given frame as shown in Fig.Q8(b) by slope deflection method. El is constant for all the members. Draw BMD and Elastic curve. Fig.Q8(b) Module - 5 Analyse the continuous beam as shown in Fig.Q9 by moment distribution method and draw the BM diagram. The support B sinks by 9 mm. Take El = 1×10 ¹² N-mm². Fig.Q9 OR Analyse the frame shown in Fig.Q10 by moment distribution method and draw the BMD. Assume El constant.

