SUSN CONTRACTOR OF THE CHARLES OF TH

BCS405C

Fourth Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025

Optimization Technique

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
1	a.	Let $f(x_1, x_2) = e^{x_1 x_2^2}$ where $x_1 = t \cos t$ and $x_2 = t \sin t$. Find $\frac{df}{dt}$.	6	L2	CO1
	b.	Discuss the gradient of vector with respect to matrix and obtain the gradient of vector $f = [e^{x_0x_1} e^{x_2x_3}]$ with respect to the matrix $x = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$.	7	L2	COI
	c.	Find the Taylor's series expansion of the function $f(x, y) = x^2y^2 + 2x^2y + 3xy^2$ in power of $(x + 2)$ and $(y - 1)$ upto a second degree terms.	7	L2	CO
		OR			
2	a.	If \overrightarrow{x} , \overrightarrow{y} and R^2 and $y_1 = -2x_1 + x_2$, $y_2 = x_1 + x_2$. Show that the Jacobian determinate $ \det J = 3$.	6	L2	COI
	b.	Obtain the gradient of matrix $f = \begin{bmatrix} \sin(x_0 + 2x_1) & 2x_1 + x_3 \\ 2x_0 + x_2 & \cos(2x_2 + x_3) \end{bmatrix}$ with respect	7	L2	CO
		to matrix $\mathbf{x} = \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 \\ \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$,			
	c.	Find the Taylor's series expansion of $f(x, y) = \sin(xy)$ in terms of $(x - 1)$ and $(y - \pi/2)$ upto second degree.	7	L2	СО
		Module – 2			
3	a.	Module – 2 Assume that the neuron have a sigmoid activation function, perform a forward pass and a backward pass on the network. Assume that the actual output of y is 1 and learning rate is 0.9 perform another forward pass. (Refer Fig.Q3(a)).	12	L3	CO
3	a.	Assume that the neuron have a sigmoid activation function, perform a forward pass and a backward pass on the network. Assume that the actual output of y	12	L3	CO
3	a.	Assume that the neuron have a sigmoid activation function, perform a forward pass and a backward pass on the network. Assume that the actual output of y is 1 and learning rate is 0.9 perform another forward pass. (Refer Fig.Q3(a)).	12	L3	CO

			BCS405C		
100		OR			
4	a.	If $f = x^2(x + y)$ where $C = x^2$ and $S = x + y$: i) Construct a computational graph ii) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial x}$ at the point $x = 2$ and $y = 3$ using chain rule	12	L2	CO2
		ii) Construct computational graphs in forward mode to show the result of (ii).			
	b.	Obtain the gradient of mean squared error.	8	L2	CO2
	1				
_		Module – 3	6	L2	CO3
5	a.	Describe local and global optima. List out the difference between local and global optima.	U	112	
	b.	Minimize $f(x) = 3x_1^2 + 4x_2^2 + 5x_3^2$ subject to the constrain $x_1 + x_2 + x_3 = 10$.	7	L3	CO
17	c.	Use Fibonacci search method to minimize $f(x) = x^2$ over [-5, 15] by taking $n = 7$.	7	L3	CO3
		OR			
6	a.	Define convex set. Explain separating hyper-plane of convex set.	6	L2	CO
	b.	Using the Hessain matrix, matrix, classify the relative extreme for the function: $f(x_1, x_2, x_3) = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$.	7	L3	CO
	c.	Use 3-point interval search method to find maximum $f(x) = x(5\pi - x)$ on	7	L3	CO
		$[0, 20]$ with $\varepsilon = 0.1$.			
		Module – 4			
7	a.	Use Newton method for $f(x_1x_2) = x_1^2 + x_2^2 + 14x_1 + 14x_2 + 100$ starting form	7	L3	CO
		the point $x_1 = (0, 0)$.	6	L2	CO
	b.	Explain how the gradient descent algorithm works.	7	L2	CO
	C.	Write the difference between stochastic gradient descent and minim batch gradient descent method.	,	112	CO
		OR OR			Aug.
8	a.	Use steepest Descent method for $f[x_1 \ x_2] = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting from the point $x_1 = (0, 0)$ [perform 3 iteration].	7	L3	СО
	b.	Write the advantages and disadvantages algorithm for stochastic gradient	7	L1	CO
	-	descent algorithm. Write the mini batch gradient descent algorithm.	6	L2	CO
Her di	C.	Write the film batch gradient descent argorithm.			
		Module – 5			
9	a.	Explain in brief: i) Adagrad optimization strategy	10	L2	CO
		ii) RMSprop.		ļ.,	
	b.	What is the difference between convex optimization and non-convex optimization?	5	L2	CO
	c.	Describe the saddle point problem in machine learning.	5	L3	CO
		OR	4.0		
10	a.	Write short notes on: i) Stochastic gradient descent with momentum BANGALORE - 560 037	10	L2	CO
	b.	ii) ADAM. What is the best optimization algorithm for machine learning?	5	L3	CO
	c.	Briefly explain the advantage of RMSprop over Adagrad.	5	L2	CO