BAD402

ourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Artificial Intelligence

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

BANGALORE

		Module 1	M	L	C
Q.1	a.	Explain the significance of the Turing Test in AI. What abilities does a computer need to pass the turing test? Discuss why AI researchers have not focused extensively on passing the Turing test.	10	L2	COI
	b.	Write the percept sequence for vacuum cleaner agent and tabulate the workflow of the same with respect to the scenario with location of square A and B as given in Fig.Q1(b). Fig.Q1(b)	10	L3	COI
		OR	33,00		
Q.2	a.	Compare simple reflex agents and model-based reflex agents, focusing on their perception processing, decision-making methods and explain how model-based agents address the limitations of simple reflex agents with their schematic diagrams.	10	L3	CO1
	b.	Analyze and discuss PEAS descriptor for the following applications in detail: i) Medical diagnosis s/m ii) Taxi driver iii) Interactive English tutor iv) Part picking robot v) Refinery controller.	10	L3	COI
		Module – 2	4.0	T 4	COS
Q.3	a.	Define Toy problems and Real-world problems in the context of problem- solving approaches with an example for each type in detail.	10	L2	CO2
	b.	Compare and contrast the vacuum world problem and the 8-tile puzzle problems discussing their state representations, initial states, actions and goal tests.	10	L3	CO2
		OR OR	10	13	COA
Q.4	a.	Explain the components and architecture of a problem solving agent.	10	L2	CO2
	b.	Compare and contrast depth-first search with breadth-first search with examples.	10	L3	CO2
		Module – 3			000
Q.5	a.	Outline a generic knowledge-based agent's program and discuss the difference between declarative and procedural approaches in the context of building knowledge-based agents.	10	L3	CO3

			40	T 0	000
	b.	Apply A* search algorithm to find the solution path from the start node (S)	10	L3	CO ₃
		to the goal node (G). The heuristic values (h) are provided with the nodes,			
		and the travel costs (C) are provided with the edges as shown in Fig.Q5(b).			
		and the traver costs (C) are provided with the edges as should in 118. 20(3).			
		10:1 2:8 , 3:4			
		3 (A) T (B) T (C)			
		11.562 (5 5)		H 6	
		10202 4 13 3		Star trace of	
		6 2 B a 6 3			
		0 6 70			
	-	9.2 7. 3.3			
		Fig.Q5(b)			
		OR			
0.6		Describe the Wumpus world environment and the PEAS specification for	10	L2	CO3
Q.6	a.	Describe the wumpus world environment and the resent presents and make	10		000
		the knowledge based agent. Explain how does the agent navigate and make		120	
		decisions based on percepts in this environment.			
	b.	Solve the following eight-tile puzzle using heuristic function approach and	10	L2	CO
		the tree diagram considering the initial and final states as specified.			
		4 5 6			
		7 8 6 7 8			
		Initial State Final State			
		Indian State	4-11		10.0
		MCDV 4			
		Module – 4	10	12	CO
Q.7	a.	Define universal and existential instantiations with examples. Prove the	10	L2	CO
		following using Backward and forward chaining:			
		"As per the law, it is a crime for an American to sell weapons to hostile		# B 34	
		nations. Country E, an enemy of America, has some missiles and all the			
		missiles were sold to it by Solan, who is an American citizen". Prove that			
		"Solan is a criminal".	10		-
	b.	Explain the following with respect to first-order logic:	10	L2	CO
		(i) Assertions and queries (ii) Numbers, sets and lists			
		(iii) The wumpus world.			
		OR		250 201	
0.0	-		10	L3	CO
Q.8	a.	Apply predicate logic to translate and formalize the following statements:	10	LS	CO.
		(first order logic)			
		(i) Marcus was a man.			
		(ii) Marcus was a Pompeian.			
		(iii) All Pompeian were Romans.			
		(iv) Caesar was a ruler.			
		(v) All Romans were either loyal to Caesar or hated him.	87 8		
		(vi) Everyone is loyal to someone.			
		(vii) People only try to assassinate rulers they are not loyal to.			
	100	(viii) Marcus tried to assassinate Caesar			
		(in) All man are morals			
	1	(ix) All men are people. BANGALORE - 560 037			
		(x) Some people are loyal to Marcus.	200		
		In each case, provide the appropriate predicates, quantifiers, variables and			
	1 5 6	logical connectives to represent the statements accurately in predicate logic			
		notations.			
		notations.			
		E-1-i-1-day-ad-dayining-1ithith	10	L2	CO
	b.	Explain backward chaining algorithm with an example.	10	LL	CU
- 10 5	1 0				

A COUNTY OF THE PARTY OF THE PA					William Total			
		Module – 5		11/1				
Q.9	a.	In a city, 30% of the population owns a dog, while 70% owns a cat. Among dog owners, 80% take their dogs for daily walks and among cat owners, only 50% do so. If a person is observed walking their pet daily, calculate probability that this person owns a dog. State the Baye's theorem.	10	L3	COS			
	b.	Explain Expert Systems, detailing the characteristics, capabilities, incapabilities, components and provide two examples.	10	L2	CO			
OR								
Q.10	a.	Explain uncertain knowledge in the context of artificial intelligence. Discuss the challenges an agent focus when acting under uncertainty with the example of diagnosing a dental patient's toothache.	10	L2	CO			
	b.	Explain the concept of inference using full joint probability in the context of agents acting under uncertainty with an example of the following variables: Weather = {sunny, rain, cloudy, snow}, Cavity = {cavity, ¬cavity}. Also calculate the following: P(cavity v toothache), P(cavity toothache), P(¬cavity toothache), Given the following full joint distribution for the Toothache, Cavity, Catch world.		L3	CO			
		Toothache TToothache Catch TCatch Catch TCatch Cavity 0.108 0.012 0.072 0.008 CMRIT LIBRA	ARY					
		TCavity 0.016 0.064 0.144 0.576 RANGALORE - 560	037		133			
		CR. CR. ON. 2015 O. CR. CR.						
		CR.						