First Semester MCA Degree Examination, Dec.2024/Jan.2025 sign and Analysis of Algorithms

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

				500	
		Module – 1	M	L	C
Q.1	a.	Define algorithm and discuss the characteristics of a good algorithm.	5	L1	CO1
	b.	Explain Asymptotic notations with a diagram and explain with examples.	10	L1	CO1
	c.	Outline an algorithm to find maximum of n elements and calculate its time complexity.	5	L2	CO1
	_	OR			
Q.2	a.	Prove the theorem : If $f_1(n) \in o(g_1(n))$ and $f_2(n) \in o(g_2(n))$ then $f_1(n) + f_2(n) \in o(max \{g_1(n), g_2(n)\})$	10	L3	CO1
87	b.	Design a general plan for analyzing recursive algorithms. Explain with an example.	10	L1	CO1
		Module – 2			
Q.3	a.	Apply Topological sort on the graph given by considering the Vertex in degrees. Also write C code for the same. Fig Q3(a)	12	L3	COI
	b.	Write Quicksort algorithm and apply the same on the following numbers. Show till the 1 st partition. 24, 9, 29, 14, 19, 27.	8	L3	CO1
	()	OR			
Q.4	a.	Explain divide and conquer. What are its advantages and disadvantages? How is it different from decrease and conquer and transform and conquer.	10	L1	CO2
	b.	Discuss Stassen's matrix multiplication algorithm and explain how it applies divide and conquer.	10	L1	CO2
		Module – 3			
	a.	Apply Huffman coding algorithm on the following data:	10	L3	CO2

		Module – 1	M	L	C
Q.1	a.	Define algorithm and discuss the characteristics of a good algorithm.	5	L1	CO1
	b.	Explain Asymptotic notations with a diagram and explain with examples.	10	L1	CO1
	c.	Outline an algorithm to find maximum of n elements and calculate its time complexity.	5	L2	CO1
		OR			
Q.2	a.	Prove the theorem : If $f_1(n) \in o(g_1(n))$ and $f_2(n) \in o(g_2(n))$ then $f_1(n) + f_2(n) \in o(max \{g_1(n), g_2(n)\})$	10	L3	CO1
al'	b.	Design a general plan for analyzing recursive algorithms. Explain with an example.	10	L1	CO1
		Module – 2			
Q.3	a.	Apply Topological sort on the graph given by considering the Vertex in degrees. Also write C code for the same.	12	L3	CO1
	b.	Write Quicksort algorithm and apply the same on the following numbers. Show till the 1 st partition. 24, 9, 29, 14, 19, 27.	8	L3	CO1
	(OR			
Q.4	a.	Explain divide and conquer. What are its advantages and disadvantages? How is it different from decrease and conquer and transform and conquer.	10	L1	CO2
	b.	Discuss Stassen's matrix multiplication algorithm and explain how it applies divide and conquer.	10	L1	CO2
		Module – 3	1		
Q.5	a.	Apply Huffman coding algorithm on the following data: Character P Q R S T Frequency 35 10 20 20 15 Create: (i) Huffman Tree (ii) Decode 100110110100110.	10	L3	CO2

b.	Apply greedy technique to solve the following knapsack problem. Weight 1 3 4 5 Profit 1 4 5 7	10	L3	CO2
	Find the items to be included and write the algorithm. Maximum weight capacity in 7.			
1	OP			L
Τ.		10	т 2	000
a.	from it.	10	L3	CO2
b.	Fig Q6(a) Write Prim's algorithm and apply the same on the following graph.	10	1.3	CO2
	6 11 8 2 7 3 9 14 14 4 14 4 15 10 2 S			
	Medule – 4 BANGA	10		000
a.	problem. Max weight is 7.	10	L3	CO3
b.	Solve the below mentioned Travelling salesman problem.	10	L3	CO3
	a.	Weight 1 3 4 5 7 Find the items to be included and write the algorithm. Maximum weight capacity in 7. OR a. Consider the oth vertex as the source and find the shortest path to all other vertices from it. Fig Q6(a) b. Write Prim's algorithm and apply the same on the following graph. Fig Q6(b) Fig Q6(b) Fig Q6(c) Fig Q6(Weight 1 3 4 5 7 Find the items to be included and write the algorithm. Maximum weight capacity in 7. OR a. Consider the oth vertex as the source and find the shortest path to all other vertices from it. OR b. Write Prim's algorithm and apply the same on the following graph. Fig Q6(a) Fig Q6(b) Fig Q6(b) Module -4 PANGADRE 560037 Module -4 PANGADRE 560037 Meight 1 3 4 5 7 b. Solve the below mentioned Travelling salesman problem.	Weight 1 3 4 5 7 Find the items to be included and write the algorithm. Maximum weight capacity in 7. OR a. Consider the oth vertex as the source and find the shortest path to all other vertices from it. DR a. Consider the oth vertex as the source and find the shortest path to all other vertices. Fig Q6(a) b. Write Prim's algorithm and apply the same on the following graph. 10 L3 Fig Q6(b) Fig Q6(b) Fig Q6(c) Fig

•		OR	10	· •	000
Q.8	a.	Write Bellman Ford Algorithm, apply on the given graph and mention the drawback.	10	L3	CO3
		$6\sqrt{2}$ -1 $\sqrt{5}$ 3	0		
		D 5 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3			
		5 Fig Q8(a)		E .	
	b.	Apply multistage graph algorithm on the given graph.	10	L3	CO
		72 4 6 5 9 4			
		0 3 7 7 3 10 2 12			
		8 6 11		2	
		Fig Q8(b)			2
Q.9	a.	Write N-Queen's problem algorithm and apply back tracking method for	10	L4	CO
Q. <i>3</i>	a.	n = 4. CMRIT LIBRARY BANGALORE - 560 037	10	L	CO
	b.	Write Pseudo-code for Hamiltonian cycle problem and check if it is	10	L3	CO
		possible to visit all vertices only once in the given graph.			
		2 3			
	S	6 8			70
		Fig Q9(b)			
		OR			
Q.10	a.	Find the subset from the given set where sum = 11 and set = $\{2, 3, 7, 8, 10\}$ by constructing the state space tree.	10	L4	CO:
Q.10					

3 of 3