22MCA13

First Semester MCA Degree Examination, June/July 2024

Data Structures

BANGALONT inte. 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

Q.1	Module - 1		M	L	C
Q.1				-	
	A. What are Data Structures? How would you classify the	em?	6	L2	CO1
	Explain the basic operations on stack data structure.		6	L2	CO1
	Convert the following infix expression to postfix form $p + q * r \wedge s - (t * u - v) - w$.	using a stack:	8	L3	CO1
	OR	1		T 1	001
Q.2	general? Explain each of them.	on data structures in	6	L1	CO1
	Write a program to convert an Infix expression to post	tfix form using stack.	8	L3	CO1
	Evaluate the following post fix expression using stack 5 3 4 * 5 6 2 / - * +		6	L3	CO1
	Module – 2				
Q.3	a. What is Recursion? What are its merits and demerits?	2 0-	5	L1	CO2
	b. What is a queue? Write C functions to implement operations.	add Q and delete Q	10	L3	CO1
	c. What is a circular queue? What are its advantages over	r an ordinary queue?	5	L2	CO2
	OR				
Q.4	Write a recursive function in C to calculate the factor Trace your function to calculate the factorial of 4.	ial of a given number.	6	L3	ÇO1
12	b. What are priority queues? What are its uses?		5	L1	CO2
1	c. Give a recursive definition of tower of Hanoi p definition give the steps to move 3 disks.	problem. Using your	9	L3	CO2
	Module - 3				
Q.5	a. What is Linked list? What are its advantages and disac	dvantages?	6	L2	CO3
	b. Explain different types of Linked lists.	10 10	9	L2	CO3
	c. Explain the getnode() and freenode() operations.		5	L2	CO3
	OR	N	•		
Q.6	a. Write C functions to delete a node from i) beginning given node of a singly linked list and explain the steps	ii) end and iii) a	10	L3	CO3
	1 of 2				

					CA13	
8	b.	What do you mean by static and dynamic memory allocation? Explain some commonly used dynamic memory management functions.	10	L2	CO4	
		Module – 4				
Q.7	a.	Define: Binary Tree. Explain important properties of binary trees.	10	L2	CO3	
	b.	Compare the preorder, inorder and postorder traversal algorithms of binary trees. Give the three traversals of the following tree:	10	L4	CO3	
		© © Ø Fig.Q.7(b)	45			
		OR				
Q.8	a.	What is a binary search tree? What are its applications? Give an algorithm to search for an element in a binary search tree.	8	L3	CO3	
	b.	Along with examples, explain the steps to delete an element from a binary search tree for each of the following cases: i) The element is a leaf node ii) It has one child node iii) It has two child nodes.	7	L3	CO3	
*	c.	With an example, explain how a binary tree can be represented using an array.	5	L2	CO3	
		Module – 5	<u> </u>			
Q.9	a.	Define Graph. Explain how graphs can be represented using adjacency matrix and adjacency lists.	8	L2	CO3	
	b.	Explain BFS graph traversal algorithm.	4	L2	CO3	
	c.	What is Hashing? Write a short note on hash table organization.	8	L1	CO4	
2		OR				
Q.10	a.	For the given undirected graph: i) Give the adjacency matrix representation. ii) Give the adjacency list representation. iii) List the degree of each vertex. iv) Do a depth first search starting from vertex 2.	10	L3	CO3	
	ā	3 (4) (5) Fig.Q.10(a)				
	b.	What is Radix sort? Explain how the algorithm works by sorting the following elements using radix sort: 632, 198, 058, 005, 279, 323, 762, 096, 901, 123. CMRIT LIBRARY	10	L3	CO4	