

TON J			
USN	EOF		

MMC104

First Semester MCA Degree Examination, Dec.2024/Jan.2025 Operating System

Max. Marks: 100

Note: 1: Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module -1	M	L	C
Q.1	a.	What is the significance of Operating System? Illustrate various services provided by the Operating System.	10	L2	CO1
	b.	What is the purpose of system calls? Describe different types of system calls used in Operating system with examples.	10	L2	CO1
		OR			
Q.2	a.	Illustrate the following operating system architectures with a neat diagram: (i) Microkernel (ii) Layered	10	L2	CO1
	b.	Illustrate with a neat diagram various states of process. Also discuss the significance of process control block (PCB).	10	L2	CO1
36		Module – 2			
Q.3	a.	"CPU scheduling ensures proper execution of processes". Justify. Illustrate different scheduling criteria used by CPU scheduling algorithms.	10	L2	CO1
72	b.	Discuss how dining philosophers problem is solved using semaphores.	10	L3	CO1
N 2		OR			
Q.4	a.	What do you mean by Critical Section Problem? Explain the solution to the critical-section problem using mutex locks.	10	L2	CO1
	b.	Consider the set of processes with Arrival Time, CPU burst time (in milliseconds) and priority as shown below. (Lower number represents higher priority). Process Arrival Time Burst Time Priority	10	L3	CO1
		1 of 2			

				MM	C104
0.5		Module – 3 Illustrate deadlocks with their necessary conditions.	10	L2	CO2
Q.5	a.	mustrate deadlocks with their necessary conditions.	10	LZ	CO2
	b.		10	L2	CO2
0.6		OR	10	T 0	000
Q.6	a.	Discuss deadlock detection with a neat diagram.	10	L2	CO2
	b.	Explain different methods used for recovering from a deadlock in an operating system.	10	L2	CO2
		Module – 4			
Q.7	a.	Describe in detail the concept of Paging with a neat diagram.	10	L3	CO3
	b.	Differentiate between internal and external fragmentation. OR	10	L2	CO3
Q.8	a.	Consider the page reference string: 1,0,7,1,0,2,1,2,3,0,3,2,4,0,3,6,2,1 for a memory with three frames. Determine the number of page faults using the FIFO, Optimal, and LRU replacement algorithms. Which algorithm is most efficient?	10	L3	CO3
Ú	b.	Interpret the concepts of demand paging with neat diagram.	10	L2	CO3
		Module - Supplier 560 037			
Q.9	a.	Illustrate the following access methods. i) Sequential access ii) Direct access	08	L2	CO3
	b.	Illustrate in detail the various operations performed on a file.	08	L2	CO3
	c.	Explain the following: i) Bit vector ii) Linked list	04	L2	CO3
		OR		1	
Q.10	a.	Illustrate various levels of directory structures.	10	L2	CO3
	b.	List the different file allocation methods and explain any two methods in detail.	10	L2	CO3

2 of 2