First/Second Semester B.E./B.Tech. Degree Examination, June/July 2024

Time: 3 hrs.

BANGALOW

Basic Electronics for EEE Stream

Max. Marks: 100

BBEE103/203

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	$\cdot \mathbf{M}$	L	C
Q.1	a.	Sketch the forward and Reverse characteristics for a Silicon diode and explain it.	6	L2	CO1
	b.	Explain the working of a Half wave rectifier with input and output waveform.	8	L2	CO1
	c.	What is Filter? Mention the types of Filter.	6	L1	CO1
	11	OR			
Q.2	a.	Write the various Diode Approximations.	8	L1	CO1
	b.	With circuit diagram and waveform, explain the working of a RC $-\pi$ filter using Bridge rectifier.	6	L2	CO1
	c.	Explain the working of a Zener diode as a voltage Regulator with no load.	6	L2	CO1
23-11-21-		Module – 2			
Q.3	a.	Calculate I_c , I_E , and β for a Transistor that has $\alpha = 0.98$ and $I_B = 100 \mu A$.	6	L3	CO2
	b.	Draw the input and output characteristics of a common – Emitter of a Transistor and explain it.	8	L2	ÇO2
	c.	For the voltage divider bias circuit shown in Fig Q2(c), determine V_B , V_E , I_E and V_{CE} . Assume $V_{BE} = 0.7V$ R ₁ R ₂ R ₂ R ₂ R ₃ R ₄ R ₅ R ₆ R ₂ R ₆ R ₇ Fig Q2(c) OR		L3	CO2
0.4		Explain the operation of an n-channel JFET for various bias voltages.	6	L2	CO2
Q.4	b.	Mention the advantages of FET over a BJT.	6	L1	CO2
	c.	Explain the construction of Enhancement MOSFET.	8	L2	CO2
		Module – 3			
Q.5	a.	Mention the ideal characteristics of Op-Amp.	10	L2	CO2
	b.	Define the following parameters of Op-Amp i) CMRR ii) Slew rate iii) PSRR iv) Input offset voltage.	4	L1	CO2
	c.	Derive the expression of voltage Gain of a Non-inverting Op-Amp.	6	L2	CO2
		OR			
Q.6	a.	How Op-Amp can be used as an integrator.	6	L2	CO2
				1	A

	b.	Draw the block diagram of Typical Op-Amp and mention the function of each block.	6	L1	CO2
	c.	For the circuit shown in Fig Q6(c), find output voltage and voltage gain. Vin = Nok 1 Vin = Fig Q6(c)	8	L3	CO2
		Tig Qu(C)			
		Module – 4			
Q.7	a.	Perform the following: i) $(532.65) = ()_{16} = ()_2$ ii) $(ABCD)_{16} = ()_2 = ()_8$.	8	L3	CO3
	b.	State and prove the De Morgan's theorem for two variables.	8	L1	CO3
	c.	Using basic Boolean theorem prove that $(x + y)(x + z) = x + yz$.	4	L3	CO3
11-20		OR			
Q.8	a.	Draw the logic circuit for the Boolean expression	4	L1	CO4
		$Y = \overline{A}BC + A\overline{B}C + ABC$.			
	b.	Implement full adder using Two half adder and an OR-Gate.	8	L3	CO4
	c.	Simplify the following Boolean expressions $(A + B)(\overline{A} + B)$ ii) $\overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + A \overline{B} \overline{C}$.	8	L3	CO4
		Module – 5			1
Q.9	a.	What is strain Gauge? Explain the construction of unbounded strain gauge.	8	L2	CO5
Q.J	b.	With the help of circuit diagram and waveform, explain the operation of LVDT.	8	L2	CO5
	c.	What is Thermistor? Mention its applications.	4	L1	COS
		OR CMRIT LIBRARY			
Q.10	a.	Explain the working of Photodiode. BANGALORE - 560 037	7	L2	CO5
	b.	Draw the block diagram of Superhetrodyne receiver and mention the function of each block.	10	L2	COS
	C.	Mention the need for modulation.	3	L1	COS