

BESCK104C

First Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025 CMR/Introduction to Electronics and Communication

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.
3.VTU formula Handbook is permitted.

		Module – 1	M	L	C
1	a.	With a neat block diagram, explain the DC power supply.	6	L2	COI
	b.	With a circuit diagram explain the working of voltage doubler.	6	L2	CO1
	c.	With circuit diagram and waveforms, explain the working of Bi – Phase full wave rectifier.	8	L2	CO1
		OR OR			
2	a.	Draw the circuit of Zener diode voltage regulator and explain the working.	6	L2	CO1
	b.	What is multistage amplifier? Show that the overall gain of multistage amplifier is product of individual stage gains.	6	L3	CO1
	c.	What are the advantages of negative feedback? Derive an expression for overall voltage gain of negative feedback amplifier.	8	L3	CO1
		Module – 2			
3	a.	State and explain conditions for oscillations (Barkhausen criterion).	6	L1	CO2
	b.	With circuit diagram, explain the working Wein Bridge Oscillator.	6	L2	CO2
	c.	With circuit diagram and waveforms, explain the working of single stage astable mutlivibrator circuit using op-amp.	8	L2	CO2
		OR			
4	a.	List the ideal characteristics of op-Amp.	6	L1	CO2
	b.	Explain the following parameters of the op-Amp. i) Slew Rate ii) Input offset voltage iii) CMRR.	6	L1	CO2
	c.	How op-Amp can be used as an integrator with necessary output equation and waveforms.	8	L2	CO2
		Module – 3			
5	a.	i) Convert $(256.45)_{10} = (?)_2 = (?)_{16}$ ii) Find x if $(211)_x = (152)_8$ iii) Convert $(357.14)_8 = (?)_{16}$.	8	L3	CO3
	b.	Subtract (1010.11) ₂ from (1001.10) ₂ using 1's and 2's complement methods.	6	L3	CO3
	c.	State and prove DeMorgan's theorems for 3 input variables.	6	L2	CO3
		1 of 2			V-2

			BE	SCK	104C
		OR			755
6	a.	Simplify the following Boolean expressions:	6	L4	CO3
		i) $f_1 = \overline{x} \overline{y} + xy + \overline{x}y$			
		ii) $f_2 = x \oplus y \oplus z$.			
8	b.	Obtain canonical forms of the following Boolean expressions [SoP form].	6	L3	CO3
		i) $f = a + \overline{b}c$			
		ii) $f = xy + \overline{x}z$.			
	c.	Design full adder circuit using basic gates.	8	L3	CO3
		Module – 4			
7	a.	Define embedded system. Differentiate between embedded systems and	6	L1	CO
		general purpose computing system.			
	b.	Draw the block diagram of embedded system and explain the different	6	L2	CO ₄
		elements.			
	c.	Differentiate between:	8	L1	CO ₄
		i) Microprocessor Vs Microcontroller ii) RISC Vs CISC.			
8	a.	OR Draw the block diagram of instrumentation system and explain.	8	L2	CO
0	b.	What is seven segment display? Explain the types of seven segment display.	8	L2	CO
	100		4	L2	CO
	c.	What are sensors and Actuators?	-	LZ	
9		Module – 5 With a neat diagram, explain modern communication system.	6	L2	COS
9	a.		6	L2	CO
	b.	Define modulation and explain amplitude modulation with waveforms.			
	c.	With waveforms, explain ASK, FSK and SPK modulation techniques.	8	L2	CO
		OR CMRIT LIBRARY PANGALORE - 560 037	0	T 1	CO
10	a.	Explain different modes of radio wave propagation. BANGALORE - 560 037	8	L1	CO
	b.	What is multiplexing? Explain different types of multiplexing in communication system.	8	L2	CO
	c.	Explain the advantages of digital communication over analog communication.	4	L1	CO

2 of 2