BMATS201

Second Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025

Mathematics – II for CSE Stream

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

Time.P3

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	07	L2	CO1
	b.	Prove that $\beta(m,n) = \frac{\lceil m \cdot \rceil n}{\lceil (m+n) \rceil}$	07	L2	CO1
	c.	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dy dx$ by changing to polar coordinates.	06	L3	C01
		OR			
Q.2	a.	Evaluate $\int_{0}^{4a} \int_{\frac{x^{2}}{4a}}^{2\sqrt{ax}} xy dy dx$ by change the order of integration.	07	L2	C01
	b.	Show that $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta = \pi$	07	L2	CO1
	c.	Write a program to find the volume of the tetrahedron bounded by the planes $x = 0$, $y = 0$, $z = 0$, $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	06	L3	CO5
		Module – 2			
Q.3	a.	Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at the point $(2, -1, 2)$ along $2\hat{i} - 3\hat{j} + 6\hat{k}$.	07	L2	CO2
	b.	Find the value of the constants a, b, c such that $\vec{F} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$ is irrotational.	07	L2	CO2
	c.	Show that the cylindrical co-ordinate system is orthogonal.	06	L3	CO2
		OR			
Q.4	a.	Find the value of the constants 'a' such that the vector field, $\vec{F} = (axy - z^3)\hat{i} + (a-2)x^2\hat{j} + (1-a)xz^2\hat{k}$ is irrotational.	07	L2	CO2
	b.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	07	L2	CO2
	c.	Write a program to verify whether the following vectors (2, 1, 5, 4) and (3, 4, 7, 8) are orthogonal.	06	·L3	COS

		Module – 3			•
Q.5	a.	Express the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$ in the vector spaces of 2×2 matrices as	07	L2	CO3
		a linear combination of $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$			
	b.	Determine whether the vectors $V_1 = (1, 2, 3)$, $V_2 = (3, 1, 7)$ and $V_3 = (2, 5, 8)$ are linearly dependent or linearly independent.	07	L2	CO3
	c.	Verify the rank nullity theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$	06	L3	CO3
		OR			
Q.6	a.	Let W be the subspace of R ⁵ spanned by $x_1 = (1, 2, -1, 3, 4)$, $x_2 = (2, 4, -2, 6, 8)$, $x_3 = (1, 3, 2, 2, 6)$, $x_4 = (1, 4, 5, 1, 8)$ and $x_5 = (2, 7, 3, 3, 9)$. Find a subset of vectors which forms a basis of W.	07	L2	CO3
	b.	Consider the following polynomials in p(t) and inner product:	07	L2	CO3
		$f(t) = t + 2$, $g(t) = 3t - 2$ $h(t) = t^3 - 2t - 3$ and $f(t) = t^3$			
		(i) Find <f, g=""> and <f, h=""> (ii) Find f and g </f,></f,>			
	c.	If V is a vector space of polynomials over R. Find a basis and dimension of the subspaces W and V, spanned by the polynomials. $x_1 = t^3 - 2t^2 + 4t + 1 , x_2 = 2t^3 - 3t^2 + 9t - 1 \\ x_3 = t^3 + 6t - 5 , x_4 = 2t^3 - 5t^2 + 7t + 5$	06	L2	CO3
		Module – 4			
Q.7	a.	Find the real root of the equation $x \log_{10} x - 1.2 = 0$ by Regular Falsi method. Correct to four decimal places. CMRIT LIBRARY	07	L2	CO4
	b.	From the following table find the number of students who have obtained less than 45 marks. Marks $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ No. of students 31 42 51 35 31	07	L2	CO4
	c.	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's $(1/3)^{rd}$ rule taking four equal strips.	06	L3	CO4
		OR	0=	T A	001
Q.8	a.	Fit the polynomial for the following data using Newton's divided difference formula and hence find f(3).	07	L2	CO4
		x 2 4 5 6 8 10 y 10 96 196 350 868 1746			
	b.	Using Lagrange's interpolation formula find f(4).	07	L2	CO4
	Ŋ.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07		004
		y -4 2 14 158			

					Section
Q. 8	c.	Use Simpson's $(3/8)^{th}$ rule to evaluate $\int_{1}^{4} e^{1/x} dx$ by taking four ordinates.	06	L3	CO4
		Module – 5			
Q.9	a.	Employ Taylor's series method to solve the initial value problem	07	L2	CO4
		$\frac{dy}{dx} = x - y^2$; $y(0) = 1$ at the point $x = 0.1$ by considering upto 4 th degree			
		terms.			
	b.	Apply Milne's method to compute y(1.4) for the differential equation	07	L2	CO4
	D.		07	122	004
		$\frac{dy}{dx} = x^2 + \frac{y}{2}$, given that $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.3) = 2.4649$ and			
		y(1.3) = 2.7514 correct to four decimal places.			
		y(1.5) 2.7517 concerto four decimal places.			
	c.	Use fourth order Runge Kutta method to find the value of y at $x = 0.1$,	06	L2	CO4
		given that			
		$\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ and $h = 0.1$.			
		$\frac{1}{dx} = 3e^{2} + 2y^{2}$, $y(0) = 0^{2}$ and $y(0) = 0^{2}$.			
	1-5-71	OR *			
Q.10	a.	Use Modified Euler's method to compute $y(0.1)$, given that	07	L2	CO4
		$\frac{dy}{dx} = x^2 + y$; y(0) = 1 by taking h = 0.05.			
		dx dx , y (o) I by taking it bibs.			
					001
	b.	If $\frac{dy}{dx} = 2e^x - y$; $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$ and $y(0.3) = 2.090$.	07	L2	CO4
		Find the value of y at $x = 0.4$ correct to four decimal places by applying			
		Milne's predictor and corrector method CMRIT LIBRARY			
		RANGALORE - 560 037	-		-
	c.	Write a program to solve: $\frac{dy}{dx} - 2y = 3e^x$ with $y(0) = 0$ using Taylor's	06	L3	CO5
		series method at $x_1 = 0.1$, $x_2 = 0.2$ and $x_3 = 0.3$.			

* * * * *