

CMR INSTITUTE OF TECHNOLOGY

Affiliated to VTU, Approved by AICTE, and Accredited by NBA, by NAAC with A++

VTU- SoE

VTU 3rd Semester MBA Degree Examination Dec’24/ Jan ‘25

Introduction to Python, Data and Control Systems

22MBABA303

Questions Solution

1. a. Explain about “Creativity” and Innovation” in Python

Creativity in Python

Creativity refers to the ability to think of new and original ideas. In Python, this can be

expressed through:

Examples:

1. Creative Problem Solving:

✓ Writing a concise one-liner instead of a verbose loop.

2. Creative Use of Python Libraries:

✓ Combining libraries like Pandas, Matplotlib, and Scikit-learn in unique

ways.

3. Creative Code Design:

✓ Writing elegant, readable, and efficient code.

✓ Using design patterns innovatively in Python projects.

Innovation in Python

Innovation is about turning creative ideas into practical solutions, tools, or products. In

Python, this involves building something new or improving existing solutions.

Examples:

1. Developing New Tools or Libraries:

✓ Creating a new Python package that simplifies a complex task.

✓ Contributing to open-source projects with new features.

2. Automating Manual Processes:

✓ Writing Python scripts to automate repetitive business or data processing

tasks.

3. Innovative Applications:

✓ Using AI/ML with Python to build chatbots, recommendation systems, or

fraud detection systems. Developing new web apps with frameworks like

Django or FastAPI.

b Explain about the order of operations in Python

c Explain Python datatypes

2a State parameters and arguments with a suitable example

A parameter is the variable name listed in a function definition. It acts as a placeholder for

the values (arguments) the function will receive.

Argument

An argument is the actual value that is passed to the function when it is called.

Ex:

Function definition

def greet(name): # 'name' is a parameter

 print("Hello,", name)

Function call

greet("CMRIT") # "CMRIT" is an argument

b Explain “Python” debugging

Debugging in Python means identifying and fixing errors (bugs) in your code. It's an

essential skill for writing clean, working programs.

Types of Bugs

1. Syntax Errors – Mistakes in code structure

 Example: if x == 5 print(x)

2. Runtime Errors – Errors that occur during execution

 Example: dividing by zero

3. Logical Errors – Code runs but gives wrong output

 Example: wrong formula or loop condition

Best Practices for Debugging

• Reproduce the bug consistently.

• Add print/log statements to isolate where it occurs.

• Use a debugger to inspect variables.

• Keep your code modular to test parts independently.

• Remove or disable debug code when deploying.

c Explain Computer Hardware architecture

A Computer Hardware Architecture Block Diagram typically consists of the main

components of a computer system and how they interact. Here’s a simple breakdown of the

key components:

Main Components of Computer Architecture

1. Central Processing Unit (CPU)

o Control Unit (CU): Directs operations within the computer.

o Arithmetic Logic Unit (ALU): Performs mathematical and logical

operations.

o Registers: Small storage areas inside the CPU for temporary data.

2. Memory (Primary Storage/RAM & ROM)

o RAM (Random Access Memory): Temporary storage for running

programs.

o ROM (Read-Only Memory): Stores firmware and system boot

instructions.

3. Input Devices

o Examples: Keyboard, Mouse, Scanner, Microphone.

4. Output Devices

o Examples: Monitor, Printer, Speakers.

5. Storage (Secondary Memory)

o HDD (Hard Disk Drive) / SSD (Solid-State Drive): Permanent data

storage.

6. System Bus (Data Pathways)

o Data Bus: Transfers actual data between components.

o Address Bus: Transfers memory addresses.

o Control Bus: Sends control signals between CPU and other components.

7. I/O Interfaces & Peripherals

o Includes USB ports, network cards, and external devices.

8. Power Supply Unit (PSU)

o Converts electrical power for the system.

3 a State syntax of if—else statements

Basic Syntax:

if condition:

 # block of code if condition is True

else:

 # block of code if condition is False

Ex:

age = 18

if age >= 18:

 print("You are eligible to vote.")

else:

 print("You are not eligible to vote.")

elif (else if)

Used to check multiple conditions.

marks = 85

if marks >= 90:

 print("Grade: A")

elif marks >= 75:

 print("Grade: B")

else:

 print("Grade: C")

• Use colons (:) at the end of if, elif, and else.

• Indentation (usually 4 spaces) is required for the code blocks.

b Explain various types of string methods and what it does?

1. len()

Returns the length of the string.

len("hello") # Output: 5

2. lower() and upper()

Convert the string to lowercase or uppercase.

"Hello".lower() # Output: 'hello'

"hello".upper() # Output: 'HELLO'

3. strip()

Removes leading and trailing whitespace (or specified characters).

" hello ".strip() # Output: 'hello'

4. replace(old, new)

Replaces all occurrences of a substring with another.

"apple".replace("p", "b") # Output: 'abble'

5. split(separator)

Splits a string into a list using the specified separator.

"one,two,three".split(",") # Output: ['one', 'two', 'three']

6. join(iterable)

Joins elements of a list into a single string.

",".join(["a", "b", "c"]) # Output: 'a,b,c'

7. find(sub) and index(sub)

Finds the position of a substring. find() returns -1 if not found; index() raises an error.

"hello".find("e") # Output: 1

"hello".index("e") # Output: 1

8. startswith() and endswith()

Check if a string starts or ends with a specific substring.

"hello".startswith("he") # Output: True

"hello".endswith("lo") # Output: True

9. isalnum(), isalpha(), isdigit()

Check character properties.

"abc123".isalnum() # True

"abc".isalpha() # True

"123".isdigit() # True

10. capitalize(), title()

Format capitalization.

"hello world".capitalize() # Output: 'Hello world'

"hello world".title() # Output: 'Hello World'

c. Explain chain conditional statements in Python.

Chained conditionals let you check multiple conditions in a structured way using if, elif,

and else.

Syntax:

if condition1:

 # Code block if condition1 is True

elif condition2:

 # Code block if condition2 is True

elif condition3:

 # Code block if condition3 is True

else:

 # Code block if none of the above conditions are True

 Example:

marks = 78

if marks >= 90:

 print("Grade: A")

elif marks >= 75:

 print("Grade: B")

elif marks >= 60:

 print("Grade: C")

else:

 print("Grade: D")

 Output:

Grade: B

Note:

• Python checks the conditions from top to bottom.

• As soon as one condition is True, it executes that block and skips the rest.

• The else block is optional, but useful for a default case.

Nested conditionals

You can nest one if...else block inside another:

age = 20

citizen = True

if age >= 18:

 if citizen:

 print("You are eligible to vote.")

 else:

 print("You must be a citizen to vote.")

else:

 print("You are not old enough to vote.")

Output:

You are eligible to vote.

4 a State the working of a Python ‘break’ statement

The break statement is used to exit a loop early — before the loop condition becomes False

or the loop finishes all iterations.

Inside for loops:

for item in iterable:

 if condition:

 break # Exit the loop

while condition:

 if condition_to_stop:

 break

Example 1: Using break in a for loop

for num in range(1, 10):

 if num == 5:

 break

 print(num)

 Output:

1

2

3

4

➡ The loop stops when num == 5.

b Explain comparison operators in Python

Comparison operators are used to compare two values. They return a Boolean value:

- True if the comparison is correct

- False otherwise

Example:

a = 10

b = 20

print(a == b) # False

print(a != b) # True

print(a < b) # True

print(a > b) # False

print(a <= b) # True

print(a >= b) # False

c Explain “String slices” and “Strings are mutable”

String Slicing

Slicing allows you to extract a part (substring) of a string using index ranges.

Syntax:

string[start : end : step]

• start: index to begin (inclusive)

• end: index to stop (exclusive)

• step: interval (default is 1)

 Ex:

text = "Python"

print(text[0:3]) # 'Pyt'

print(text[2:]) # 'thon'

print(text[:4]) # 'Pyth'

print(text[-1]) # 'n' (last character)

print(text[::-1]) # 'nohtyP' (reverse string)

Strings Are Immutable

In Python, strings are immutable, which means you cannot change them after creation.

word = "hello"

word[0] = "H" # This will raise an error

Output:

TypeError: 'str' object does not support item assignment

So, a new string can be created using slicing and concatenation:

word = "hello"

new_word = "H" + word[1:]

print(new_word) # Output: 'Hello'

5 a State Python Tuple with an example

Python Tuple

A tuple is a built-in Python data type used to store multiple items in a single, ordered, and

immutable collection.

Key Characteristics of Tuples:

• Ordered (items have a fixed position)

• Immutable (cannot be changed after creation)

• Allow duplicates

• Can contain elements of different data types

b Explain various List operations in Python

A list is a built-in Python data type used to store multiple items in a mutable, ordered

collection.

Basic List Syntax:

my_list = [10, 20, 30, 40]

c Explain the various types of errors

1. Syntax Errors – Mistakes in code structure

 Example: if x == 5 print(x)

2. Runtime Errors – Errors that occur during execution

 Example: dividing by zero

3. Logical Errors – Code runs but gives wrong output

 Example: wrong formula or loop condition

Python programs can produce different types of errors (also called exceptions). These errors

must be handled or fixed for the program to run correctly.

1. Syntax Errors

Occurs when Python code is not written correctly according to the rules of the language.

Ex:

if x == 5

 print("Hello") # Missing colon

Error Message:

Syntax Error: expected ':'

2. Indentation Errors

Happens when the code is not properly indented (Python uses indentation to define blocks).

Example:

if True:

print("Hi") # Not indented

Error Message:

IndentationError: expected an indented block

3. Name Errors

Occurs when you use a variable or function name that has not been defined.

Example:

print(score) # score not defined

Error Message:

NameError: name 'score' is not defined

4. Type Errors

Raised when an operation is applied to the wrong data type.

Example:

x = "5" + 2 # can't add string and integer

Error Message:

TypeError: can only concatenate str (not "int") to str

5. Value Errors

Occurs when the data type is correct, but the value is not suitable.

Example:

int("abc") # cannot convert to integer

Error Message:

ValueError: invalid literal for int() with base 10

6. Index Errors

Happens when you try to access an index that doesn't exist in a list or string.

Example:

my_list = [1, 2, 3]

print(my_list[5]) # index out of range

Error Message:

IndexError: list index out of range

7. ZeroDivisionError

Occurs when dividing by zero.

Example:

x = 10 / 0 # division by zero

Error Message:

ZeroDivisionError: division by zero

8. Attribute Errors

Raised when an object does not have the attribute you're trying to access.

Example:

x = 5

x.append(3) # integers don’t have 'append'

Error Message:

AttributeError: 'int' object has no attribute 'append'

9. Import Errors

Occurs when Python cannot find the module you're trying to import.

Example:

import maths # typo: should be 'math'

Error Message:

ModuleNotFoundError: No module named 'maths'

6 a State python string with an example

A string in Python is a sequence of characters enclosed in quotes. It is one of the most

commonly used data types for handling text.

String Declaration:

String using single quotes

greeting = 'Hello, World!'

String using double quotes

name = "Python Programming"

Multi-line string using triple quotes

info = '''This is a

multi-line string'''

print(greeting)

print(name)

print(info)

b Tuples are immutable. Explain.

A tuple is a Python data type used to store multiple items in an ordered and unchangeable

collection.

Example:

my_tuple = (10, 20, 30)

Immutability means you cannot change, add, or remove items after the tuple is created.

Tuples are immutable – contents can't be changed. So, No append(), remove(), or item

assignment. You can access, iterate, and create new tuples, but not modify existing ones

In contrast, lists are mutable, meaning their elements can be changed.

Example: Trying to Modify a Tuple (Will Cause Error)

my_tuple = (1, 2, 3)

my_tuple[0] = 100 # Attempt to change value

Output:

TypeError: 'tuple' object does not support item assignment

Hence,

• Access elements using indexing.

• Use slicing to read portions of the tuple.

• Reassign the whole tuple (create a new one).

my_tuple = (1, 2, 3)

new_tuple = my_tuple + (4, 5) # This creates a new tuple

print(new_tuple) # (1, 2, 3, 4, 5)

Why Use Immutable Tuples?

Advantage Description

 Safer Prevents accidental changes

Faster More efficient in memory and performance

Suitable for Keys Can be used as keys in dictionaries

c Explain the Dictionary operation in Python.

A dictionary in Python is a collection of key-value pairs. It is unordered, mutable, and

indexed by keys (not positions).

Creating a Dictionary

student = {

 "name": "Suma",

 "age": 21,

 "course": "Data Science"

}

Common Dictionary Operations

Operation

Type
Syntax / Method Example Output

Access value dict[key] student["name"] → 'Alice'

Add item dict[key] = value student["grade"] = "A"

Update value dict[key] = new_value student["age"] = 22

Delete item del dict[key] del student["course"]

Get value

safely
dict.get(key)

student.get("name") →

'Alice'

Keys list dict.keys() dict_keys(['name', 'age'])

Values list dict.values() dict_values(['Alice', 21])

Items (pairs) dict.items()
dict_items([('name',

'Alice'), ...])

Length len(dict)
2 (number of key-value

pairs)

Clear all items dict.clear() {}

Check key 'key' in dict 'age' in student → True

Copy

dictionary
dict.copy() Makes a shallow copy

Remove with

return
dict.pop(key)

student.pop("age") →

returns value

Set default
dict.setdefault(key,

default)
Adds key if not present

Update

dictionary

dict.update({key:

value})

Adds or modifies multiple

keys

Example:

employee = {"id": 101, "name": "John", "salary": 50000}

Access

print(employee["name"]) # John

Add

employee["department"] = "HR"

Update

employee["salary"] = 55000

Delete

del employee["id"]

Loop through items

for key, value in employee.items():

 print(key, ":", value)

 Output:

name : John

salary : 55000

department : HR

Why Use Dictionaries?

• Fast lookup by key

• Useful for storing structured data (like JSON)

• Great for mapping relationships

7 a State Python Dictionary with an example

A dictionary in Python is a collection of key-value pairs. It is unordered, mutable, and

indexed by keys (not positions).

Creating a Dictionary

student = {

 "name": "Suma",

 "age": 21,

 "course": "Data Science"

}

b Explain Python Exception handling using ‘try’ statement

In Python, exception handling is used to catch and handle runtime errors gracefully, without

crashing the program.

Basic Structure of try-except:

try:

 # Code that might raise an error

except SomeError:

 # Code to handle the error

Full Syntax Example:

try:

 num = int(input("Enter a number: "))

 result = 10 / num

 print("Result:", result)

except ZeroDivisionError:

 print("You can't divide by zero!")

except ValueError:

 print("Invalid input! Please enter a number.")

Output (example):

Enter a number: 0

You can't divide by zero!

Optional Blocks:

Block Purpose

try Code that may cause an exception

except Catches and handles the exception

else Executes if no exception occurs

finally Executes no matter what (used for clean-up)

Example with else and finally:

try:

 n = int(input("Enter a number: "))

 print(100 / n)

except ZeroDivisionError:

 print("Cannot divide by zero.")

except ValueError:

 print("Please enter a valid number.")

else:

 print("Division successful.")

finally:

 print("Execution complete.")

Why Use Exception Handling?

• Prevents program crashes

• Provides user-friendly error messages

• Useful for file handling, user input, APIs, etc.

c List different packages you are familiar with. Write a brief note on the determine (of)

package in python.

Common Python Packages (Libraries)

Here are several popular Python packages used across various domains:

Category Package Name Purpose

Data Analysis pandas Data manipulation and analysis

Numerical

Computation
numpy

Handling arrays and numerical

operations

Visualization matplotlib, seaborn Plotting graphs and charts

Machine Learning scikit-learn ML algorithms and tools

Deep Learning tensorflow, keras, torch Neural networks

Web Development flask, django Web app frameworks

APIs & Web Scraping
requests,

beautifulsoup4
HTTP and web scraping

File Handling os, shutil, pathlib File system operations

Math & Statistics math, statistics, random Math functions and stats

8 Compulsory Case study:

a)Develop a python code to solve quadratic equation by importing “sqrt” from

“math”. The formula is given below:

Sol 1= −𝒃 +√𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂
 ; Sol 2= √

𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂

from math import sqrt

Input coefficients

a = float(input("Enter coefficient a: "))

b = float(input("Enter coefficient b: "))

c = float(input("Enter coefficient c: "))

Calculate the discriminant

d = b**2 - 4*a*c

Check if real solutions exist

if d >= 0:

 sol1 = (-b + sqrt(d)) / (2 * a)

 sol2 = (-b - sqrt(d)) / (2 * a)

 print("Solution 1:", sol1)

 print("Solution 2:", sol2)

else:

 print("No real solutions (discriminant is negative)")

b) Develop a python code to find the area of a triangle given three sides ‘a’. ‘b’ and ‘c’

as per the following formulae.(Heron’s formula)

𝑆 =
𝑎 + 𝑏 + 𝑐

2

𝐴𝑟𝑒𝑎 = 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

from math import sqrt

Input sides of triangle

a = float(input("Enter side a: "))

b = float(input("Enter side b: "))

c = float(input("Enter side c: "))

Calculate semi-perimeter

s = (a + b + c) / 2

Calculate area using Heron's formula

area = sqrt(s * (s - a) * (s - b) * (s - c))

print("Area of the triangle:", area)

