

Solution

Module 1

Q1 (a) Explain the characteristics of C programming language.

Answer:

C is a powerful general-purpose programming language with several key characteristics:

1. Structured Language – Programs can be broken into smaller blocks (functions).

2. Middle-level Language – Combines features of high-level and low-level languages.

3. Portability – Code written in C can run on different machines with minimal changes.

4. Fast and Efficient – Provides low-level access to memory.

5. Rich Library – Includes a variety of built-in functions.

Example:

#include <stdio.h>

int main() {

 printf("Hello World");

 return 0;

}

Q1 (b) Explain the structure of a C program.

Answer:

A typical C program has the following structure:

1. Preprocessor directives (e.g., #include <stdio.h>)

2. Global declarations

3. main() function – the execution starts here

4. Function definitions

Example:

#include <stdio.h> // Header file

int main() {

 printf("Structure Example");

 return 0;

}

Q1 (c) List the uses of C Language.

Answer:

C is used in various domains:

The C programming language is one of the most widely used languages in the world. Its

power, efficiency, and closeness to hardware make it ideal for many domains. Below are the

key uses of C language, explained in detail:

1. System Programming - C is used to develop operating systems, system tools, and device

drivers. It provides low-level access to memory using pointers and direct hardware

manipulation.Example: UNIX and Linux kernels are written in C.

2. Embedded Systems- Embedded software in devices like washing machines, microwaves,

smart TVs, routers, etc., are often written in C. C is preferred because of its speed, portability,

and direct control over hardware.

3. Game Development-C provides high performance and real-time memory management

which is essential for game engines.

4. Compiler Design- Many compilers for other programming languages (like C++, Java,

etc.) are implemented using C. Its efficiency and control make it ideal for writing language

parsers and interpreters.

5. Database Systems - Popular databases like MySQL and Oracle use C in their core code.C

helps manage memory and database operations effectively.

6. Operating Systems- Many modern OS like Linux, Windows (some parts), and macOS

include code written in C. It is used to implement the core system components, schedulers,

and memory management.

7. Network Drivers and Protocols - C is widely used in developing networking components

like protocols (TCP/IP), routers, and switch firmware.

8. GUI (Graphical User Interface) Applications -Though high-level languages are more

common now, C is still used for building basic GUI applications with toolkits like GTK.

9. Competing in Competitive Programming - Due to its simple syntax and fast execution,

C is often used in coding contests and interviews.

10. Portability - Programs written in C can be compiled and run on different machines with

little or no modification, making it ideal for cross-platform development.

11. Education and Learning

Q2 (a) Explain the various forms of if statement with examples.

Answer:

1. Simple if Statement

This is the basic form where a condition is tested. If the condition is true, the statement inside

the if block is executed.

Syntax:

if (condition) {

 // code to execute if condition is true

}

Example:

int a = 10;

if (a > 0) {

 printf("a is positive");

}

2. if-else Statement

This form allows two paths: one if the condition is true, and another if it is false.

Syntax:

if (condition) {

 // code if condition is true

} else {

 // code if condition is false

}

Example:

int a = -5;

if (a > 0) {

 printf("Positive number");

} else {

 printf("Non-positive number");

}

3. if-else if-else Ladder

Used to check multiple conditions sequentially. As soon as one condition is true, the

corresponding block is executed.

Syntax:

if (condition1) {

 // code block 1

} else if (condition2) {

 // code block 2

} else {

 // default code block

}

Example:

int marks = 75;

if (marks >= 90) {

 printf("Grade A");

} else if (marks >= 75) {

 printf("Grade B");

} else {

 printf("Grade C");

}

4. Nested if Statement

An if statement inside another if block is known as a nested if. This is used for checking

multiple related conditions.

Syntax:

if (condition1) {

 if (condition2) {

 // code to execute

 }

}

Example:

int age = 25;

int citizen = 1;

if (age >= 18) {

 if (citizen == 1) {

 printf("Eligible to vote");

 }

}

Q2 (b) With example explain while, do-while, for loops.

Answer:

In C programming, loops are used to repeatedly execute a block of code based on a condition.

There are three primary types of loops: while, do-while, and for loops.

1. While Loop

The while loop executes a block of code as long as the given condition is true.

Syntax:

while (condition) {

 // Code to be executed

}

Example:

#include <stdio.h>

int main() {

 int i = 1;

 while (i <= 5) {

 printf("%d\n", i);

 i++;

 }

 return 0;

}

Output:

1

2

3

4

5

2. Do-While Loop

The do-while loop is similar to the while loop, but the condition is checked after the block of

code is executed. This means the loop will always execute at least once.

Syntax:

do {

 // Code to be executed

} while (condition);

Example:

#include <stdio.h>

int main() {

 int i = 1;

 do {

 printf("%d\n", i);

 i++;

 } while (i <= 5);

 return 0;

}

Output:

1

2

3

4

5

3. For Loop

The for loop is typically used when the number of iterations is known beforehand. It

combines initialization, condition checking, and increment/decrement in a single line.

Syntax:

for (initialization; condition; increment/decrement) {

 // Code to be executed

}

Example:

#include <stdio.h>

int main() {

 for (int i = 1; i <= 5; i++) {

 printf("%d\n", i);

 }

 return 0;

}

Output:

1

2

3

4

5

Module 2

Q3 (a) Define array. Give syntax of 1-D array. Explain the operations.

Answer:

An array is a collection of similar data elements stored under one name.

Syntax:

data_type array_name[size];

Operations:

1. Declaration: int arr[5];

2. Initialization: arr[0] = 10;

3. Traversal:

for(int i = 0; i < 5; i++)

 printf("%d", arr[i]);

Q3 (b)Give 2D array syntax and write matrix multiplication program.

Matrix Multiplication Program:

Multiplication of two matrices is done by multiplying corresponding elements from the rows

of the first matrix with the corresponding elements from the columns of the second matrix

and then adding these products. The number of columns in the first matrix must be equal to

the number of rows in the second matrix.

Program

#include <stdio.h>

// function to get matrix elements entered by the user

void getMatrixElements(int matrix[][10], int row, int column) {

 printf("\nEnter elements: \n");

 for (int i = 0; i < row; ++i) {

 for (int j = 0; j < column; ++j) {

 printf("Enter a%d%d: ", i + 1, j + 1);

 scanf("%d", &matrix[i][j]);

 }

 }

}

// function to multiply two matrices

void multiplyMatrices(int first[][10],

 int second[][10],

 int result[][10],

 int r1, int c1, int r2, int c2) {

 // Initializing elements of matrix mult to 0.

 for (int i = 0; i < r1; ++i) {

 for (int j = 0; j < c2; ++j) {

 result[i][j] = 0;

 }

 }

 // Multiplying first and second matrices and storing it in result

 for (int i = 0; i < r1; ++i) {

 for (int j = 0; j < c2; ++j) {

 for (int k = 0; k < c1; ++k) {

 result[i][j] += first[i][k] * second[k][j];

 }

 }

 }

}

// function to display the matrix

void display(int result[][10], int row, int column) {

 printf("\nOutput Matrix:\n");

 for (int i = 0; i < row; ++i) {

 for (int j = 0; j < column; ++j) {

 printf("%d ", result[i][j]);

 if (j == column - 1)

 printf("\n");

 }

 }

}

int main() {

 int first[10][10], second[10][10], result[10][10], r1, c1, r2, c2;

 printf("Enter rows and column for the first matrix: ");

 scanf("%d %d", &r1, &c1);

 printf("Enter rows and column for the second matrix: ");

 scanf("%d %d", &r2, &c2);

 // Taking input until

 // 1st matrix columns is not equal to 2nd matrix row

 while (c1 != r2) {

 printf("Error! Enter rows and columns again.\n");

 printf("Enter rows and columns for the first matrix: ");

 scanf("%d%d", &r1, &c1);

 printf("Enter rows and columns for the second matrix: ");

 scanf("%d%d", &r2, &c2);

 }

 // get elements of the first matrix

 getMatrixElements(first, r1, c1);

 // get elements of the second matrix

 getMatrixElements(second, r2, c2);

 // multiply two matrices.

 multiplyMatrices(first, second, result, r1, c1, r2, c2);

 // display the result

 display(result, r1, c2);

 return 0;

}

Q4 (a) Define string with example. Explain string taxonomy.

Answer:

String is a sequence of characters ending with a null character \0.

Example:

char name[] = "CMRIT";

Taxonomy:

In C programming, string taxonomy refers to the classification and representation of strings.

String Representation:

 Character Array: A sequence of characters stored in an array, terminated by '\0' (null

character).

 String Literal: A fixed sequence of characters stored in read-only memory.

Common Operations:

 strcpy(): Copy a string.

 strcat(): Concatenate two strings.

 strlen(): Find the length of a string.

 strcmp(): Compare two strings.

Q4 (b) Explain various string operations.

1. strlen() - Find Length of a String

Syntax: size_t strlen(const char *str);

Description: Returns the length of the string (excluding the null character \0).

Example:

#include <stdio.h>

#include <string.h>

int main() {

 char str[] = "Hello";

 printf("Length of string: %lu\n", strlen(str));

 return 0;

}

Output: Length of string: 5

2. strcpy() - Copy One String to Another

Syntax: char *strcpy(char *dest, const char *src);

Description: Copies the contents of src into dest (including the null character).

Example:

#include <stdio.h>

#include <string.h>

int main() {

 char source[] = "CMRIT";

 char destination[20];

 strcpy(destination, source);

 printf("Copied String: %s\n", destination);

 return 0;

}

Output: Copied String: CMRIT

3. strcmp() - Compare Two Strings

Syntax: int strcmp(const char *str1, const char *str2);

Description: Compares two strings and returns:

0 if both are equal

A negative value if str1 < str2

A positive value if str1 > str2

Example:

#include <stdio.h>

#include <string.h>

int main() {

 char str1[] = "Hello";

 char str2[] = "World";

 if (strcmp(str1, str2) == 0)

 printf("Strings are equal.\n");

 else

 printf("Strings are not equal.\n");

 return 0;

}

Output: Strings are not equal.

4. strcat() - Concatenate Two Strings

Syntax: char *strcat(char *dest, const char *src);

Description: Appends src to dest, modifying dest.

Example:

#include <stdio.h>

#include <string.h>

int main() {

 char str1[20] = "Hello, ";

 char str2[] = "World!";

 strcat(str1, str2);

 printf("Concatenated String: %s\n", str1);

 return 0;

}

Output: Concatenated String: Hello, World!

5. strrev() - Reverse a String (Non-Standard)

Syntax: char *strrev(char *str);

Description: Reverses the given string in place (not a standard function in <string.h>, but

available in some compilers).

Example:

#include <stdio.h>

#include <string.h>

int main() {

 char str[] = "CMRIT";

 printf("Reversed String: %s\n", strrev(str));

 return 0;

}

Output: Reversed String: TIRMC

Q4 (c) C program for linear search.

#include <stdio.h>

int linearSearch(int arr[], int size, int target) {

 for (int i = 0; i < size; i++) {

 if (arr[i] == target) {

 return i; // Return index if target is found

 }

 }

 return -1; // Return -1 if target is not found

}

int main() {

 int arr[] = {10, 20, 30, 40, 50};

 int target = 30;

 int size = sizeof(arr) / sizeof(arr[0]);

 int result = linearSearch(arr, size, target);

 if (result != -1) {

 printf("Element %d found at index %d\n", target, result);

 } else {

 printf("Element %d not found in the array.\n", target);

 }

 return 0;

}

Module 3

Q5 (a) Define function. Call by value vs call by reference.

Answer:

A function in C is a block of code that performs a specific task. It is used to avoid

redundancy, improve modularity, and make code reusable. Functions can take parameters and

return a value.

In Call by Value, the actual value of the argument is passed to the function. This means that

any changes made to the parameter inside the function do not affect the actual argument used

in the function call.

 The function gets a copy of the value of the argument.

 Changes to the parameter in the function do not affect the original variable.

#include <stdio.h>

void modifyValue(int num) {

 num = 100; // Modifying the local copy

}

int main() {

 int a = 10;

 modifyValue(a); // Call by value

 printf("Value of a after function call: %d\n", a); // Output will be 10

 return 0;

}

In Call by Reference, the address (reference) of the argument is passed to the function,

allowing the function to modify the actual argument's value directly.

 The function receives the memory address of the argument, so any changes made to

the parameter inside the function directly affect the original argument.

#include <stdio.h>

void modifyValue(int *num) {

 *num = 100; // Modifying the value at the address pointed by num

}

int main() {

 int a = 10;

 modifyValue(&a); // Call by reference

 printf("Value of a after function call: %d\n", a); // Output will be 100

 return 0;

}

Q5 (b) Recursive function to find factorial.

#include <stdio.h>

// Recursive function to find factorial

int factorial(int n) {

 if (n == 0 || n == 1)

 return 1; // Base case

 else

 return n * factorial(n - 1); // Recursive call

}

int main() {

 int num;

 printf("Enter a number: ");

 scanf("%d", &num);

 if (num < 0)

 printf("Factorial is not defined for negative numbers.\n");

 else

 printf("Factorial of %d is %d\n", num, factorial(num));

 return 0;

}

Q5 (c) Swap using call by value.

#include <stdio.h>

void swap(int a, int b) {

 int temp;

 temp = a;

 a = b;

 b = temp;

 printf("Inside swap function: a = %d, b = %d\n", a, b);

}

int main() {

 int x = 10, y = 20;

 printf("Before swap function call: x = %d, y = %d\n", x, y);

 swap(x, y); // Call by value

 printf("After swap function call: x = %d, y = %d\n", x, y);

 return 0;

}

Q6 (a) Write a C program to find mean of N numbers using array and pointers.

#include <stdio.h>

int main() {

 int n, i;

 float sum = 0.0, mean;

 printf("Enter the number of elements: ");

 scanf("%d", &n);

 float numbers[n]; // Array to store numbers

 float *ptr = numbers; // Pointer to the array

 // Input elements

 printf("Enter %d numbers:\n", n);

 for (i = 0; i < n; i++) {

 scanf("%f", ptr + i); // Using pointer arithmetic

 }

 // Calculate sum using pointers

 for (i = 0; i < n; i++) {

 sum += *(ptr + i); // Dereferencing pointer

 }

 mean = sum / n;

 printf("Mean = %.2f\n", mean);

 return 0;

}

Q6 (b) Write a C rogram to add two matrices using pointers.

#include <stdio.h>

int main() {

 int m, n, i, j;

 printf("Enter number of rows and columns: ");

 scanf("%d%d", &m, &n);

 int a[m][n], b[m][n], sum[m][n];

 // Input first matrix

 printf("Enter elements of Matrix A:\n");

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 scanf("%d", (*(a + i) + j));

 }

 }

 // Input second matrix

 printf("Enter elements of Matrix B:\n");

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 scanf("%d", (*(b + i) + j));

 }

 }

 // Add matrices using pointers

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 ((sum + i) + j) = *(*(a + i) + j) + *(*(b + i) + j);

 }

 }

 // Display result

 printf("Resultant Matrix (A + B):\n");

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 printf("%d ", *(*(sum + i) + j));

 }

 printf("\n");

 }

 return 0;

}

Module 4

Q7 (a) Define structure, Give syntax of structure.

A structure in C is a user-defined data type that allows grouping variables of different types

under one name. It is used to represent a record (like a student, employee, etc.).

Syntax of Structure:

struct StructureName {

 data_type member1;

 data_type member2;

 // ...

};

Example:

struct Student {

 int rollNo;

 char name[50];

 float marks;

};

Q7 (b) Write a C program using structure to read and display student information.

#include <stdio.h>

// Define the structure

struct Student {

 int rollNo;

 char name[50];

 float marks;

};

int main() {

 struct Student s; // Declare structure variable

 // Read student details

 printf("Enter student roll number: ");

 scanf("%d", &s.rollNo);

 printf("Enter student name: ");

 scanf(" %[^\n]", s.name); // To read string with spaces

 printf("Enter student marks: ");

 scanf("%f", &s.marks);

 // Display student details

 printf("\n--- Student Information ---\n");

 printf("Roll Number: %d\n", s.rollNo);

 printf("Name : %s\n", s.name);

 printf("Marks : %.2f\n", s.marks);

 return 0;

}

Q7 (c) Explain Nested structure with example.

A nested structure in C is a structure that contains another structure as one of its members.

This helps in organizing complex data logically — like grouping address inside a student or

employee record.

📚 Syntax of Nested Structure:

c

CopyEdit

struct Inner {

 // members

};

struct Outer {

 struct Inner innerMember; // Nested structure

 // other members

};

Example: Student with Address (Nested Structure)

c

CopyEdit

#include <stdio.h>

// Inner structure

struct Address {

 char city[30];

 int pin;

};

// Outer structure

struct Student {

 int rollNo;

 char name[50];

 struct Address addr; // Nested structure

};

int main() {

 struct Student s;

 // Input

 printf("Enter roll number: ");

 scanf("%d", &s.rollNo);

 printf("Enter name: ");

 scanf(" %[^\n]", s.name);

 printf("Enter city: ");

 scanf(" %[^\n]", s.addr.city);

 printf("Enter pin code: ");

 scanf("%d", &s.addr.pin);

 // Output

 printf("\n--- Student Details ---\n");

 printf("Roll No : %d\n", s.rollNo);

 printf("Name : %s\n", s.name);

 printf("City : %s\n", s.addr.city);

 printf("PIN : %d\n", s.addr.pin);

 return 0;

}

Q8 (a) Define union. Give syntax of Union.

A union in C is a user-defined data type similar to a structure, but with a key difference:

In a union, all members share the same memory location.

This means only one member can contain a value at any given time, saving memory when

variables are not used simultaneously.

 Syntax of Union:

union UnionName {

 data_type member1;

 data_type member2;

 // ...

};

Example:

union Data {

 int i;

 float f;

 char str[20];

};

Declaring a Union Variable:

union Data d1;

Accessing Union Members:

d1.i = 10;

d1.f = 3.14;

Q8 (b) Explain various storage classes.

Storage classes in C define scope, lifetime, default value, and visibility of variables. There are

four types:

1. auto Storage Class

The auto storage class is the default for all local variables inside a function. It is

automatically applied to any local variable that is declared inside a function without explicitly

specifying a storage class. The scope of an auto variable is local to the block in which it is

defined, meaning it can only be accessed within that block. The lifetime of the variable ends

when the block or function ends, and it is created when the block is entered and destroyed

when it exits. By default, if not initialized, auto variables contain garbage values.

Syntax:

auto data_type variable_name;

Example:

#include <stdio.h>

int main() {

 auto int x = 5; // 'auto' is implicit, so you could just write 'int x = 5;'

 printf("Value of x: %d\n", x);

 return 0;

}

Explanation: In this example, x is an auto variable (even though the auto keyword is

optional). Its value is printed within the function, and the variable is destroyed once the

function ends.

2. register Storage Class

The register storage class suggests to the compiler that a variable should be stored in a CPU

register for faster access instead of RAM. This storage class is typically used for variables

that are frequently accessed, like loop counters. However, it's important to note that you

cannot take the address of a register variable using the address-of operator (&), because

registers may not be stored in regular memory.

Syntax:

register data_type variable_name;

Example:

#include <stdio.h>

int main() {

 register int i;

 for(i = 0; i < 5; i++) {

 printf("i = %d\n", i);

 }

 return 0;

}

3. static Storage Class

The static storage class is used to retain the value of a variable between function calls. If a

variable is declared as static within a function, it retains its value between calls to that

function. It is initialized only once, and its lifetime is the entire duration of the program. If

declared globally, static restricts the scope of the variable to the file in which it is declared

(i.e., it is not visible to other files).

Syntax:

c

CopyEdit

static data_type variable_name;

Example:

#include <stdio.h>

void count_calls() {

 static int count = 0; // Static variable

 count++;

 printf("Call count: %d\n", count);

}

int main() {

 count_calls(); // Output: Call count: 1

 count_calls(); // Output: Call count: 2

 count_calls(); // Output: Call count: 3

 return 0;

}

4. extern Storage Class

The extern storage class is used to declare a variable that is defined in another file or

elsewhere in the same file. It tells the compiler that the variable exists but does not allocate

space for it. The variable should be defined in another part of the program, typically in a

different file. extern is used to share variables across multiple files in large projects.

Syntax:

extern data_type variable_name;

Example:

// File1.c

#include <stdio.h>

extern int x; // Declare the external variable

int main() {

 printf("Value of x: %d\n", x);

 return 0;

}

// File2.c

#include <stdio.h>

int x = 10; // Definition of the external variable

Q8 (c) Write a short note on typedef.

The typedef keyword in C is used to create new type names (aliases) for existing data types. It

helps improve code readability, especially when dealing with complex data types like

pointers, structures, and arrays. By using typedef, you can give more meaningful names to

these types, making the code more understandable and easier to manage.

Syntax:

typedef existing_type new_type_name;

Example:

#include <stdio.h>

typedef int Integer; // 'Integer' is now an alias for 'int'

int main() {

 Integer x = 10; // Using 'Integer' instead of 'int'

 printf("Value of x: %d\n", x);

 return 0;

}

Module 5

Q9. a. Define a File. List and explain the operations on file.

 Definition:

A file in C is a storage medium for saving data permanently, accessible through

pointers using functions from stdio.h.

 Common Operations:

1. Opening a file – fopen("filename", "mode");

Example: FILE *fp = fopen("data.txt", "r");

2. Reading/Writing data – fscanf(), fgets(), fprintf(), etc.

Example: fscanf(fp, "%d", &num);

3. File positioning – fseek(), ftell(), etc.

Example: fseek(fp, 0, SEEK_END);

4. Closing a file – fclose(fp);

Example: fclose(fp);

9. b. Write a note on:

1. fscanf()

o Reads formatted input from a file.

o Syntax: int fscanf(FILE *stream, const char *format, ...);

o Example: fscanf(fp, "%s %d", name, &age);

2. fgets()

o Reads a line (string) from a file.

o Syntax: char *fgets(char *str, int n, FILE *stream);

o Example: fgets(buffer, 100, fp);

3. fgetc()

o Reads a single character from a file.

o Syntax: int fgetc(FILE *stream);

o Example: char ch = fgetc(fp);

4. fread()

o Reads binary data from a file.

o Syntax: size_t fread(void *ptr, size_t size, size_t count, FILE *stream);

o Example: fread(arr, sizeof(int), 5, fp);

Q10. a. Write a note on:

1. fprintf()

o Writes formatted data to a file.

o Syntax: int fprintf(FILE *stream, const char *format, ...);

o Example: fprintf(fp, "Name: %s", name);

2. fputs()

o Writes a string to a file.

o Syntax: int fputs(const char *str, FILE *stream);

o Example: fputs("Hello", fp);

3. fputc()

o Writes a single character to a file.

o Syntax: int fputc(int char, FILE *stream);

o Example: fputc('A', fp);

4. fwrite()

o Writes binary data to a file.

o Syntax: size_t fwrite(const void *ptr, size_t size, size_t count, FILE *stream);

o Example: fwrite(arr, sizeof(int), 5, fp);

Q10. b. Write a note on:

1. fseek()

o Moves the file pointer to a specific location.

o Syntax: int fseek(FILE *stream, long offset, int whence);

o Example: FILE *fp = fopen("file.txt", "r");

o fseek(fp, 0, SEEK_SET);

2. ftell()

o Returns the current position of the file pointer.

o Syntax: long ftell(FILE *stream);

o Example: long pos = ftell(fp);

3. fgetpos()

o Gets the current file position.

o Syntax: int fgetpos(FILE *stream, fpos_t *pos);

o Example: fgetpos(fp, &position);

4. fsetpos()

o Sets the file pointer to a previously saved position.

o Syntax: int fsetpos(FILE *stream, const fpos_t *pos);

o Example: fsetpos(fp, &position);

	Solution
	Module 1
	Q1 (a) Explain the characteristics of C programming language.
	Q1 (b) Explain the structure of a C program.
	Q1 (c) List the uses of C Language.
	1. System Programming - C is used to develop operating systems, system tools, and device drivers. It provides low-level access to memory using pointers and direct hardware manipulation.Example: UNIX and Linux kernels are written in C.
	2. Embedded Systems- Embedded software in devices like washing machines, microwaves, smart TVs, routers, etc., are often written in C. C is preferred because of its speed, portability, and direct control over hardware.
	3. Game Development-C provides high performance and real-time memory management which is essential for game engines.
	4. Compiler Design- Many compilers for other programming languages (like C++, Java, etc.) are implemented using C. Its efficiency and control make it ideal for writing language parsers and interpreters.
	5. Database Systems - Popular databases like MySQL and Oracle use C in their core code.C helps manage memory and database operations effectively.
	6. Operating Systems- Many modern OS like Linux, Windows (some parts), and macOS include code written in C. It is used to implement the core system components, schedulers, and memory management.
	7. Network Drivers and Protocols - C is widely used in developing networking components like protocols (TCP/IP), routers, and switch firmware.
	8. GUI (Graphical User Interface) Applications -Though high-level languages are more common now, C is still used for building basic GUI applications with toolkits like GTK.
	9. Competing in Competitive Programming - Due to its simple syntax and fast execution, C is often used in coding contests and interviews.
	10. Portability - Programs written in C can be compiled and run on different machines with little or no modification, making it ideal for cross-platform development.
	11. Education and Learning
	Q2 (a) Explain the various forms of if statement with examples.

	1. Simple if Statement
	2. if-else Statement
	3. if-else if-else Ladder
	4. Nested if Statement
	Q2 (b) With example explain while, do-while, for loops.

	1. While Loop
	2. Do-While Loop
	3. For Loop
	Module 2
	Q3 (a) Define array. Give syntax of 1-D array. Explain the operations.
	Q3 (b)Give 2D array syntax and write matrix multiplication program.
	Q4 (a) Define string with example. Explain string taxonomy.
	Q4 (b) Explain various string operations.
	1. strlen() - Find Length of a String
	2. strcpy() - Copy One String to Another
	3. strcmp() - Compare Two Strings
	4. strcat() - Concatenate Two Strings
	5. strrev() - Reverse a String (Non-Standard)
	Q4 (c) C program for linear search.

	Module 3
	Q5 (a) Define function. Call by value vs call by reference.
	Q5 (c) Swap using call by value.
	Q6 (a) Write a C program to find mean of N numbers using array and pointers.
	Q6 (b) Write a C rogram to add two matrices using pointers.

	Module 4
	Q7 (a) Define structure, Give syntax of structure.

	Syntax of Structure:
	Example:
	Q7 (b) Write a C program using structure to read and display student information.
	Q7 (c) Explain Nested structure with example.

	📚 Syntax of Nested Structure:
	Example: Student with Address (Nested Structure)
	Q8 (a) Define union. Give syntax of Union.

	Syntax of Union:
	Example: (1)
	Declaring a Union Variable:
	Accessing Union Members:
	Q8 (b) Explain various storage classes.
	Storage classes in C define scope, lifetime, default value, and visibility of variables. There are four types:

	1. auto Storage Class
	Syntax:
	Example:

	2. register Storage Class
	Syntax:
	Example:

	3. static Storage Class
	Syntax:
	Example:

	4. extern Storage Class
	Syntax:
	Example:
	Q8 (c) Write a short note on typedef.

	Syntax:
	Module 5
	Q9. a. Define a File. List and explain the operations on file.
	9. b. Write a note on:
	Q10. a. Write a note on:
	Q10. b. Write a note on:

