

Solution:

1. a) i. DBMS stands for Database Management System. It is software that is used to create,

manage, and manipulate databases. A DBMS provides an interface between users and the

database, enabling users to store, retrieve, update, and manage data efficiently and securely.

ii. An entity is a real-world object or concept that can be distinctly identified and stored in a

database. It can be a person, place, thing, or event about which data is collected.

Example: In a student database, a Student is an entity.

An attribute is a property or characteristic of an entity. It defines the information that is to

be stored about the entity.

Example: For the entity Student, possible attributes are: StudentID, Name, Age, Course,

iii. The Relational Data Model is a type of data model used in relational databases, where

data is organized into tables (called relations). Each table consists of rows (tuples) and

columns (attributes).

iv. A schema diagram is a visual representation of the database schema. It shows:

Tables (entities), Attributes (columns), Primary keys and foreign keys, Relationships

between tables. Example:

Students

StudentID (PK)
Name

 Age

Courses

CourseID (PK)

 CourseName

Enrollments

EnrollmentID (PK)
StudentID (FK)

 CourseID (FK)

v. A Primary Key is a unique identifier for each record (row) in a database table. It ensures

that no two rows can have the same value for the primary key and that the value is never

NULL.

• Purpose: To uniquely identify each record.

• Rules:

o Must be unique.

o Cannot be NULL.

o A table can have only one primary key (which can be made up of one or more

columns — called a composite key).

Example: StudentID in Student Table

A Foreign Key is a field (or a set of fields) in one table that refers to the primary key in

another table. It is used to establish and enforce a link between the data in two tables.

• Purpose: To maintain referential integrity between related tables.

• Can have duplicate and NULL values (unlike primary keys).

Example: StudentID in Course Table.

b) 1. Banking and Finance

• Use: Managing customer accounts, transactions, loans, and financial records.

• Example: ATM transaction management, online banking, fraud detection.

2. Education

• Use: Storing student information, course registrations, results, attendance, and faculty

records.

• Example: University student portals, exam result systems.

3. Healthcare

• Use: Managing patient records, doctor schedules, lab reports, billing, and prescriptions.

• Example: Electronic Medical Records (EMRs), hospital management systems.

4. Retail and E-commerce

• Use: Managing inventory, sales, customer orders, and supplier data.

• Example: Online shopping platforms like Amazon use DBMS for order processing and

product tracking.

5. Telecommunications

• Use: Handling call records, customer data, billing, and service management.

• Example: Mobile network providers use DBMS for storing call logs and user plans.

6. Government

• Use: Storing citizen data, tax records, identity management, and public services.

• Example: National ID databases, passport systems, vehicle registration.

7. Airlines and Railways

• Use: Reservation systems, schedules, passenger data, and ticketing.

• Example: Online flight and train booking systems.

8. Social Media Platforms

• Use: Managing user profiles, posts, messages, and friend relationships.

• Example: Facebook, Instagram use large-scale DBMS to manage massive data volumes.

9. Manufacturing

• Use: Managing supply chains, inventory, production schedules, and quality control.

• Example: ERP systems in factories.

10. Scientific Research

• Use: Storing and analyzing experimental data, simulations, and results.

• Example: Weather forecasting, genome databases.

c) The three-schema architecture is a framework for database management systems (DBMS) that

separates the database into three different levels: internal, conceptual, and external. This separation

helps in abstraction, security, and flexibility in managing databases.

Three Schema Architecture

Internal Schema (Physical Level)

- It defines the physical storage structure of the database.

- Concerned with data storage, indexing, and optimization.

Example: Storing customer data as binary files on disk.

Conceptual Schema (Logical Level)

- It provides a unified logical view of the entire database.

- Defines tables, relationships, constraints, and security rules.

Example: A relational model defining tables like Customers (ID, Name, Address).

External Schema (View Level)

- It defines different views of the database for users or applications.

- Ensures data security by restricting access to only necessary data.

Example: A bank's customer portal only shows account details but not backend transaction logs.

Importance of Each Schema Layer

Internal Schema (Storage Optimization & Performance)

- Ensures efficient data storage and retrieval.

Example: Uses indexing to speed up search queries in an e-commerce database.

Conceptual Schema (Logical Data Independence)

- Helps in defining and maintaining database integrity.

Example: If a new attribute Email is added to Customers, applications remain unaffected.

External Schema (Security & Customization)

- Enables different user views without exposing unnecessary data.

Example: A sales department sees only Customer_Name, Purchase_History, while HR sees

Employee_ID, Salary.

This architecture provides data abstraction, security, and independence, making it a vital design

principle in DBMS.

2. A) A DBMS is made up of several key components that work together to store, manage, and

retrieve data efficiently. Here's a breakdown of the main components:

1. Database Engine

Role: The core service for accessing and processing data.

Function: Handles storage, retrieval, and update of data.

Acts as: The interface between low-level data and higher-level DBMS operations.

2. Data Definition Language (DDL) Compiler

Role: Processes DDL commands (like CREATE, ALTER, DROP).

Function: Defines the structure of the database schema (tables, fields, constraints).

Stores results in: The data dictionary (also called system catalog).

3. Data Manipulation Language (DML) Compiler

Role: Interprets DML queries (like SELECT, INSERT, UPDATE, DELETE).

Function: Converts high-level queries into low-level instructions the DBMS engine can execute.

4. Query Processor

Role: Interprets and optimizes SQL queries.

Function: Ensures queries are executed efficiently by creating the best execution plan.

5. Transaction Manager

Role: Manages transactions (a group of operations).

Function: Ensures ACID properties (Atomicity, Consistency, Isolation, Durability) are maintained.

Protects against: Data loss, system crashes, or concurrent access conflicts.

6. Storage Manager

Role: Manages how data is stored on physical devices (e.g., hard disks).

Function: Handles file management, buffering, indexing, and data access methods.

7. Buffer Manager (Cache Manager)

Role: Handles memory buffers for data being read/written.

Function: Minimizes disk I/O by storing frequently accessed data in main memory.

8. Authorization and Integrity Manager

Role: Controls access and enforces security rules.

Function: Manages user permissions, roles, and checks data integrity constraints.

9. Data Dictionary (System Catalog)

Role: A centralized repository of metadata (data about data).

Function: Stores information like table definitions, constraints, user roles, etc.

2B) 1. One-to-One (1:1) Relationship

Definition: A single record in Table A is related to only one record in Table B, and vice versa.

Example:

One person has one passport.

Person(ID, Name)

Passport(ID, PassportNumber, PersonID)

Use Case: When data is split across tables for privacy or security.

2. One-to-Many (1:N) Relationship

Definition: A single record in Table A can be related to many records in Table B, but each record

in Table B relates to only one in Table A.

Example:

One teacher teaches many students.

Teacher(TeacherID, Name)

Student(StudentID, Name, TeacherID)

Most common type of relationship in relational databases.

3. Many-to-Many (M:N) Relationship

Definition: Multiple records in Table A can relate to multiple records in Table B.

Example:

Students can enroll in many courses, and each course can have many students.

Student(StudentID, Name)

Course(CourseID, CourseName)

Junction Table: Enrollment(StudentID, CourseID)

Note: This relationship is implemented using a third table (junction or associative table) to link

both sides.

2C)

3a) 1. Selection (σ)

Definition: The Selection operation retrieves rows (tuples) from a relation (table) that satisfy a

specified condition.

Notation: σ<condition>(Relation)

Purpose: Filters rows based on a condition.

Let Employee be a relation:

EmpID Name Age Dept

101 Alice 25 HR

102 Bob 30 IT

103 Carol 22 HR

Query: Get all employees from the HR department.

Relational Algebra:

σ Dept = 'HR' (Employee)

Result:

EmpID Name Age Dept

101 Alice 25 HR

103 Carol 22 HR

2. Projection (π)

Definition: The Projection operation retrieves specific columns (attributes) from a relation, removing

duplicates.

Notation: π<attribute list>(Relation)

Purpose: Filters columns, keeping only the specified ones.

Example: Query: Get the names and departments of all employees.

Relational Algebra: π Name, Dept (Employee)

Result:

Name Dept

Alice HR

Bob IT

Carol HR

3b) 1. DDL Commands (Data Definition Language)

These commands are used to define or modify the structure of database objects such as tables,

schemas, indexes, and views.

Common DDL Commands:

Command Description

CREATE Creates a new table, view, database, or other database object.

ALTER Modifies an existing table structure (e.g., adding or deleting a column).

DROP Deletes an existing database object like a table or database permanently.

TRUNCATE Removes all records from a table, but keeps the structure. Faster than DELETE.

RENAME Changes the name of a database object (e.g., a table).

 Example: CREATE TABLE Employee (

 EmpID INT PRIMARY KEY,

 Name VARCHAR(50),

 Age INT);

2. DML Commands (Data Manipulation Language)

These commands are used to manipulate the data stored in database tables.

Common DML Commands:

Command Description

SELECT Retrieves data from one or more tables.

INSERT Adds new data (rows) into a table.

UPDATE Modifies existing data in a table.

DELETE Removes specific rows from a table.

 Example:

INSERT INTO Employee (EmpID, Name, Age)

VALUES (101, 'Alice', 25);

SELECT * FROM Employee;

UPDATE Employee

SET Age = 26

WHERE EmpID = 101;

DELETE FROM Employee

WHERE EmpID = 101;

Summary Table:

Category Commands Purpose

DDL CREATE, ALTER, DROP, TRUNCATE, RENAME Define or change database structure

DML SELECT, INSERT, UPDATE, DELETE Add, view, or change data

4a) i. SELECT ... FROM ... WHERE

This is the basic structure of an SQL query used to retrieve data from a table, with an optional

condition to filter the rows.

Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Purpose:

• SELECT: Specifies which columns to retrieve.

• FROM: Specifies the table.

• WHERE: Filters rows based on a condition.

Example:

SELECT Name, Age

FROM Employee

WHERE Age > 25;

This will retrieve the names and ages of employees who are older than 25.

ii. GROUP BY and HAVING

These clauses are used together to group rows based on column values and then filter groups based

on a condition.

GROUP BY

• Used to group rows that have the same values in specified columns.

• Often used with aggregate functions like SUM(), AVG(), COUNT(), MAX(), etc.

HAVING

• Used to filter groups (not individual rows).

• Similar to WHERE, but applied after grouping.

 Syntax:

SELECT column, AGG_FUNC(column)

FROM table

GROUP BY column

HAVING condition;

Example:

SELECT Dept, COUNT(EmpID) AS EmployeeCount

FROM Employee

GROUP BY Dept

HAVING COUNT(EmpID) > 2;

This query:

• Groups employees by department,

• Counts employees in each department,

• Returns only those departments that have more than 2 employees.

Summary Table:

Clause Applies To Purpose

WHERE Rows Filters individual records

GROUP BY Groups of rows Groups data based on column(s)

HAVING Groups (after GROUP BY) Filters groups after aggregation

b) A view is a virtual table in a database. It does not store data physically but presents data from

one or more tables through a predefined SQL query. Views are very important for security, simplicity,

and data abstraction in a database system.

 Why Views Are Important:

1. Data Security

• Views can restrict access to sensitive columns or rows.

• Users can access only specific data defined in the view, not the entire table.

• Example: A view for HR may show employee names and departments, but not salaries.

2. Data Abstraction / Simplification

• Views hide complex queries and present a simpler interface.

• Users don’t have to write long JOIN queries; they can query the view like a table.

3. Logical Data Independence

• You can change the structure of base tables (e.g., add columns) without affecting users who

use views.

• Views act as a buffer between the physical data structure and the users/applications.

4. Reusability

• Once a view is created, it can be reused in multiple queries just like a table.

• Saves time and ensures consistency in business logic.

5. Query Optimization

• In some cases, views can help the DBMS engine optimize query performance, especially

when the view uses indexed columns or aggregates.

6. Consistency

• Views ensure that all users see the same result from a common logic or business rule (e.g.,

tax calculations, data formatting).

Example:

Given a table Employee(EmpID, Name, Salary, Dept)

You can create a view:

CREATE VIEW HR_View AS

SELECT Name, Dept

FROM Employee;

4c) A procedure (more accurately, a stored procedure) is a precompiled set of SQL statements

stored in the database. It is used to perform a specific task, like inserting data, updating tables, or

handling business logic.

What is a Stored Procedure?

• A stored procedure is a named block of code written in SQL (or procedural SQL like PL/SQL,

T-SQL).

• It can accept parameters, perform operations, and return results.

• Stored once and reused multiple times.

Advantages of Stored Procedures:

1. Improved Performance

• Stored procedures are precompiled, so they run faster than regular SQL queries.

2. Reusability

• Once written, the procedure can be called repeatedly, reducing code duplication.

3. Security

• Users can be granted permission to execute a procedure without giving direct access to the

underlying tables.

4. Modularity

• Complex logic can be broken into smaller procedures, making code easier to maintain.

5. Reduces Network Traffic

• Multiple SQL statements are sent to the server as one procedure call, reducing

communication overhead.

6. Error Handling

• Many procedural SQL languages support exception handling inside procedures.

Syntax Example (MySQL Style):

DELIMITER //

CREATE PROCEDURE GetEmployeesByDept(IN deptName VARCHAR(50))

BEGIN

 SELECT Name, Salary

 FROM Employee

 WHERE Dept = deptName;

END //

DELIMITER ;

Calling the procedure: CALL GetEmployeesByDept('HR');

5a) 1NF – First Normal Form

Definition:

A relation (table) is in 1NF if:

1. All attributes (columns) contain only atomic (indivisible) values

2. There are no repeating groups or arrays

In Simple Words:

• Every cell should hold a single value, not a list.

• Every record (row) should be unique.

Example (Not in 1NF):

StudentID Name Subjects

101 Alice Math, Science

102 Bob English

• Subjects column contains multiple values — not atomic

Convert to 1NF:

StudentID Name Subject

101 Alice Math

101 Alice Science

102 Bob English

Now every field contains only one value → In 1NF

2NF – Second Normal Form

Definition:

A relation is in 2NF if:

1. It is already in 1NF

2. All non-key attributes are fully functionally dependent on the entire primary key (not just

part of it)

In Simple Words:

• Remove partial dependency

• A non-key column should not depend on part of a composite key

Example (1NF but Not 2NF):

StudentID CourseID CourseName StudentName

101 C01 Math Alice

101 C02 Science Alice

• Primary Key: (StudentID, CourseID)

• StudentName depends only on StudentID (partial dependency)

Convert to 2NF by splitting:

Table 1: Student

StudentID StudentName

101 Alice

Table 2: CourseEnrollment

StudentID CourseID CourseName

101 C01 Math

101 C02 Science

5b) 3NF – Third Normal Form

Definition:

A table is in 3NF if:

1. It is already in 2NF

2. No transitive dependency exists between non-key attributes

Transitive Dependency:

If A → B and B → C, then A → C is a transitive dependency.

In relational terms:

• A non-prime attribute depends on another non-prime attribute.

Example (2NF but not 3NF):

StudentID StudentName Department HOD

101 Alice Science Dr. Mehta

102 Bob Commerce Dr. Sharma

• StudentID → Department

• Department → HOD

So:

StudentID → HOD (transitive dependency)

This violates 3NF because HOD depends on Department, not directly on the key.

Convert to 3NF:

Student Table:

StudentID StudentName Department

101 Alice Science

102 Bob Commerce

Department Table:

Department HOD

Science Dr. Mehta

Commerce Dr. Sharma

Now, no transitive dependencies → In 3NF

BCNF – Boyce-Codd Normal Form

Definition:

A table is in BCNF if:

1. It is in 3NF

2. For every non-trivial functional dependency X → Y, X must be a super key

In simple words: If a non-primary key column determines another column, it's not in BCNF.

Example (3NF but not BCNF):

Course Instructor Room

DBMS John A101

OS Alice B202

Assume:

• A course is taught by one instructor.

• An instructor always teaches in the same room.

Functional dependencies:

• Course → Instructor

• Instructor → Room

Here, Instructor is not a super key, but it determines Room → Violates BCNF

Convert to BCNF:

Table 1: CourseInstructor

Course Instructor

DBMS John

OS Alice

Table 2: InstructorRoom

Instructor Room

John A101

Alice B202

Now all determinants are super keys → In BCNF

6a) 4NF – Fourth Normal Form

Definition:

A table is in 4NF if:

1. It is in Boyce-Codd Normal Form (BCNF)

2. It has no multi-valued dependencies.

Multi-Valued Dependency (MVD):

A multi-valued dependency occurs when one attribute determines multiple values of another

attribute (or a set of attributes), but they are independent of each other.

In other words, a column in a table determines multiple independent values in other columns.

Example (Not in 4NF):

StudentID Subject Language

101 Math English

101 Science French

102 History Spanish

Here:

• StudentID → Subject (Student determines the subject)

• StudentID → Language (Student determines the language)

The problem is that Subject and Language are independent of each other, but both depend on

StudentID, which leads to redundancy.

Convert to 4NF:

To convert this to 4NF, you can split the multi-valued dependencies into two separate tables:

Table 1: StudentSubjects

StudentID Subject

101 Math

101 Science

102 History

Table 2: StudentLanguages

StudentID Language

101 English

101 French

102 Spanish

Now, there are no multi-valued dependencies in either table → In 4NF

5NF – Fifth Normal Form

Definition:

A table is in 5NF if:

1. It is in 4NF

2. It has no join dependencies and joining the table does not result in loss of information.

Join Dependency:

A join dependency occurs when a table can be decomposed into multiple smaller tables, but when

joined back together, the resulting data contains redundant information, leading to loss of

information.

In 5NF, the goal is to eliminate any redundancy that arises from decomposing a table into smaller

tables and joining them.

Example (Not in 5NF):

Consider a table with data about projects, employees, and their skills:

ProjectID EmployeeID Skill

P1 E1 Java

ProjectID EmployeeID Skill

P1 E1 SQL

P1 E2 Python

P2 E1 Java

P2 E3 Java

The issue here is that we have a join dependency — the combination of ProjectID, EmployeeID, and

Skill can be split in several ways. The table can be decomposed into:

• Projects Table: (ProjectID, EmployeeID)

• EmployeeSkills Table: (EmployeeID, Skill)

However, when you join these tables, you will still get the same information, but there's redundancy

because EmployeeID-Skill combinations could be replicated in multiple rows.

Convert to 5NF:

To convert to 5NF, we can decompose the table in such a way that no information is lost when the

tables are joined:

Table 1: ProjectEmployee

ProjectID EmployeeID

P1 E1

P1 E2

P2 E1

P2 E3

Table 2: EmployeeSkill

EmployeeID Skill

E1 Java

E1 SQL

E2 Python

E3 Java

6b) i) If we have two attributes (or sets of attributes) in a relation, say X and Y, we say that Y is

functionally dependent on X if:

• For every value of X, there is exactly one corresponding value of Y.

This is represented as: X → Y

Where:

• X is the determinant (the attribute or set of attributes that determines other attributes).

• Y is the dependent (the attribute or set of attributes whose value depends on X).

Example:

Let's consider a simple table of employees:

EmployeeID Name Department Salary

101 Alice HR 5000

102 Bob IT 6000

103 Charlie HR 5500

Functional Dependency Examples:

1. EmployeeID → Name

o The EmployeeID uniquely determines the Name of the employee.

o In other words, for each EmployeeID, there is exactly one Name.

2. EmployeeID → Department

o Each EmployeeID determines a specific Department.

3. EmployeeID → Salary

o Each EmployeeID determines a specific Salary.

In this case, EmployeeID is a determinant for Name, Department, and Salary

ii) In the context of database normalization, dependency preservation is an important concept

related to decomposition of relations (tables). It ensures that after decomposing a table into smaller

tables (during normalization), the functional dependencies (FDs) are still preserved or can be

reconstructed without losing any of the original constraints.

In simple terms, when we decompose a table into multiple smaller tables, the functional

dependencies from the original table should either:

1. Be inherited by the new smaller tables, or

2. Be able to be recreated by the new set of smaller tables.

3. Let a relation R have a set of functional dependencies F. If a decomposition of R into

smaller relations R1, R2, ..., Rn results in a set of functional dependencies F1, F2, ...,

Fn, the decomposition is dependency-preserving if:

4. The union of the functional dependencies in F1, F2, ..., Fn must contain all the

functional dependencies in F. In other words, the functional dependencies in the

original relation should be either directly or indirectly captured by the decomposed

relations.

Given Table:

Consider a table Student with the following attributes and functional dependencies:

StudentID Name Department DepartmentHead

101 Alice HR Dr. Mehta

102 Bob IT Dr. Sharma

Functional Dependencies:

• StudentID → Name

• StudentID → Department

• Department → DepartmentHead

Decomposition into Two Tables:

1. Table 1: Student

StudentID Name Department

101 Alice HR

102 Bob IT

2. Table 2: Department

Department DepartmentHead

HR Dr. Mehta

IT Dr. Sharma

After decomposing the original Student table into two tables:

• In Table 1, we can preserve StudentID → Name and StudentID → Department.

• In Table 2, we preserve Department → DepartmentHead.

So, all original functional dependencies are preserved in the decomposed tables. Thus, the

decomposition is dependency-preserving.

7a) i) The ACID properties are a set of properties that guarantee that database transactions are

processed reliably and ensure the integrity of the database, even in cases of system failures, errors,

or crashes.

ACID stands for:

1. Atomicity

2. Consistency

3. Isolation

4. Durability

Each of these properties ensures that database transactions are handled correctly, ensuring that data

remains consistent, accurate, and reliable.

1. Atomicity

Atomicity means that a transaction is treated as a single unit, which either completes in full or does

not execute at all. In other words, the transaction is atomic — it is indivisible and irreducible.

• If a transaction involves multiple operations (e.g., updating multiple records), all operations

must either complete successfully, or none of them should be applied (in case of failure).

Example:

Consider a transaction where you are transferring money from one account to another:

• Step 1: Deduct money from Account A.

• Step 2: Add money to Account B.

If Step 1 is completed, but Step 2 fails, the system will roll back the transaction so that no money is

deducted and the database remains consistent.

Atomicity ensures that even if there is a system failure between these two steps, the transaction will

either complete entirely or leave the database unchanged.

2. Consistency

Consistency ensures that a transaction transforms the database from one valid state to another valid

state, adhering to all the rules, constraints, and triggers defined in the database schema.

• Before and after the transaction, the database must satisfy all integrity constraints (e.g.,

primary keys, foreign keys, unique constraints, etc.).

• If a transaction violates any of these constraints, it is rolled back.

Example:

Let’s say you have a constraint that ensures no negative balances in bank accounts. If a transaction

tries to make the balance negative (e.g., withdrawal exceeds balance), it will not be allowed to

complete.

Consistency guarantees that the database always maintains valid data after each transaction.

3. Isolation

Isolation ensures that the operations of a transaction are not visible to other transactions until the

transaction is complete (committed). Even though multiple transactions can be executing

concurrently, each transaction must be executed as if it were the only transaction.

• Isolation prevents race conditions where two transactions access and modify the same data

simultaneously, causing inconsistencies.

There are different isolation levels:

• Read Uncommitted: Transactions can read data that has been modified but not yet

committed by other transactions.

• Read Committed: Transactions can only read committed data.

• Repeatable Read: Transactions can read the same data multiple times, ensuring no other

transaction modifies the data in the interim.

• Serializable: The highest isolation level, where transactions are executed in such a way that

the result is equivalent to executing them sequentially.

Example:

Consider two transactions:

• Transaction 1: Transfer $100 from Account A to Account B.

• Transaction 2: View the balance of Account B.

If Transaction 1 is still in progress (but not yet committed), Transaction 2 should not see the

incomplete transfer; instead, it should either wait for Transaction 1 to complete or read only

committed data.

Isolation ensures that data remains accurate even when multiple transactions are processed

concurrently.

4. Durability

Durability ensures that once a transaction is committed, its changes are permanent and will not be

lost, even if there is a system failure, power loss, or crash. Once a transaction is successfully

committed, its effects are saved to the database and will persist.

• Transaction logs are maintained to recover the database state in case of a crash. When a

transaction is committed, the changes are written to the disk, ensuring the data survives any

failure.

Example:

If you transfer money between accounts and the system confirms that the transaction is complete

(committed), even if there is a power failure immediately afterward, the database will be able to

recover the transaction during the next startup and ensure the money has been correctly

transferred.

Durability guarantees that once a transaction is completed, its changes are safe and will not be

undone.

ii) New → Active → Partially Committed → Committed

 ↑ ↓

 Failed ←-------------- Aborted

7b) Two-Phase Locking (2PL) is a concurrency control protocol used in database systems to ensure

that transactions are executed in such a way that they preserve the ACID properties, especially

Isolation. It is widely used to prevent race conditions, lost updates, and dirty reads, which can arise

when multiple transactions are executed concurrently.

In the Two-Phase Locking Protocol, each transaction follows two distinct phases:

1. The Growing Phase

2. The Shrinking Phase

The goal of 2PL is to ensure that transactions do not interfere with each other in ways that would

violate isolation (one of the ACID properties).

Phases of Two-Phase Locking:

1. Growing Phase:

o In the growing phase, a transaction can acquire locks (read or write locks) on data

items.

o No locks are released in this phase, only new locks can be obtained.

o The transaction keeps acquiring locks until it reaches the end of the growing phase.

2. Shrinking Phase:

o In the shrinking phase, a transaction can only release locks.

o No new locks can be acquired in this phase; the transaction is now restricted to

releasing locks only.

o Once a transaction starts releasing locks, it cannot go back to acquiring new locks.

Basic Working of Two-Phase Locking:

The idea behind 2PL is to ensure that each transaction follows these two phases strictly, preventing

deadlocks and ensuring serializability — meaning that the results of executing transactions

concurrently are the same as if they were executed sequentially.

1. Growing Phase:

o The transaction acquires locks (either shared or exclusive) on data it is accessing.

o The transaction can only acquire locks in this phase but cannot release any locks.

o The goal is to accumulate all the necessary locks to perform the intended operations.

2. Shrinking Phase:

o Once the transaction has acquired all the locks it needs, it enters the shrinking

phase, where it releases locks.

o No new locks can be acquired in this phase.

o The transaction continues releasing locks as it completes its operations.

The key point is that the growing phase must finish before the shrinking phase begins, meaning that

once a transaction starts releasing locks, it cannot go back and acquire any more locks.

Example:

Imagine two transactions, T1 and T2, on a database with two records, A and B.

Transaction T1:

• Step 1: T1 starts and acquires a write lock on record A (growing phase).

• Step 2: T1 proceeds to modify A and acquires a read lock on record B (still growing phase).

• Step 3: T1 finishes its operations and starts releasing its locks (shrinking phase).

• Step 4: T1 releases the lock on B and then releases the lock on A.

Transaction T2:

• Step 1: T2 starts and tries to acquire a write lock on record B.

• Step 2: However, since T1 already has a read lock on B, T2 must wait until T1 releases it.

• Step 3: T2 then proceeds to acquire the lock and make its changes.

This way, the protocol ensures serializability, meaning that T1 and T2 are not interfering with each

other in a way that would lead to an inconsistent state.

Advantages of Two-Phase Locking:

1. Ensures Serializability:

o 2PL guarantees serializability, which is the highest level of isolation in a DBMS. It

ensures that the concurrent execution of transactions is equivalent to some serial

execution (i.e., transactions are executed one after another).

2. Prevents Anomalies:

o It helps prevent various concurrency anomalies such as dirty reads, non-repeatable

reads, and phantom reads by ensuring that no transaction can access data that

another transaction is in the process of modifying.

3. Deadlock Prevention (with some extensions):

o While 2PL doesn't inherently prevent deadlocks, it can be combined with deadlock

detection or prevention mechanisms to avoid them.

Disadvantages of Two-Phase Locking:

1. Deadlock:

o Although 2PL guarantees serializability, it does not prevent deadlocks. Transactions

may block each other, leading to situations where they wait for each other’s locks

indefinitely.

o Deadlock detection or prevention methods are required to handle this.

2. Reduced Concurrency:

o Since transactions hold locks during the entire growing phase, the protocol can lead

to reduced concurrency because other transactions cannot access locked data until

the transaction releases the lock.

3. Complexity:

o Managing locks, especially in complex systems with many transactions, can increase

the complexity of implementation. Efficient lock management and deadlock

handling are important.

Variants of Two-Phase Locking:

1. Strict Two-Phase Locking (S2PL):

o In strict 2PL, transactions hold all their locks until they commit. This is a stricter

version of the two-phase locking protocol, and it also prevents cascading rollbacks

because once a transaction releases a lock, it has already committed or aborted.

o It guarantees recoverability and avoids cascading rollbacks but still may cause

deadlocks.

2. Rigorous Two-Phase Locking:

o Rigorous 2PL is even stricter than strict 2PL because no lock is released until the

transaction commits. It guarantees both serializability and recoverability.

Summary of Two-Phase Locking (2PL):

Phase Action

Growing Phase Acquire locks but cannot release any locks.

Shrinking Phase Release locks but cannot acquire any new locks.

• Advantages: Ensures serializability and prevents anomalies like dirty reads.

• Disadvantages: Can lead to deadlocks, reduced concurrency, and complexity.

• Deadlock Handling: Deadlocks need to be detected or prevented through additional

mechanisms.

8a) In a Database Management System (DBMS), isolation is one of the key ACID properties that

determines how transactions interact with each other in terms of visibility of uncommitted changes.

The isolation level defines the degree to which one transaction must be isolated from other

concurrent transactions.

There are four standard isolation levels defined by the SQL standard:

1. Read Uncommitted

2. Read Committed

3. Repeatable Read

4. Serializable

Each isolation level offers a trade-off between performance (concurrency) and consistency

(isolation), with higher isolation levels providing stronger guarantees but potentially reducing

concurrency.

Isolation Levels:

1. Read Uncommitted

• Description: In this isolation level, transactions are allowed to read uncommitted changes

made by other transactions.

• Consequences: This is the lowest level of isolation, where the possibility of dirty reads, non-

repeatable reads, and phantom reads is highest.

• Dirty Read: A transaction reads data that has been written by another transaction but not

yet committed. If the second transaction rolls back, the data read by the first transaction

becomes invalid.

Example:

• Transaction 1 updates a record.

• Transaction 2 reads the record before Transaction 1 commits.

• If Transaction 1 rolls back, the changes made by it are lost, leading to inconsistent data being

read by Transaction 2.

Use Case: This level may be used for situations where performance is more important than

consistency, and it's acceptable to read uncommitted data.

2. Read Committed

• Description: In Read Committed isolation, a transaction can only read committed data,

meaning it cannot see the changes made by other transactions until they are committed.

• Consequences: This isolation level prevents dirty reads, but it still allows non-repeatable

reads and phantom reads.

o Non-repeatable Read: A transaction reads the same data twice, but the value has

changed between the two reads because another transaction updated it.

Example:

• Transaction 1 reads a record.

• Transaction 2 updates the record and commits.

• Transaction 1 reads the record again and sees a different value because Transaction 2

committed its changes after the first read.

Use Case: Commonly used for applications where data consistency is important, but absolute

isolation (serializability) is not required. For example, querying a product's stock levels in an

inventory system.

3. Repeatable Read

• Description: In this isolation level, read operations within the same transaction will always

return the same result, even if other transactions update the data in the meantime.

• Consequences: Non-repeatable reads are prevented, but phantom reads may still occur.

o Phantom Read: A transaction reads a set of rows that match a condition, but

another transaction inserts or deletes rows that would match the condition. These

newly inserted or deleted rows are invisible to the transaction reading the data.

Example:

• Transaction 1 reads a set of records that satisfy a condition.

• Transaction 2 inserts or deletes records that would match the same condition.

• Transaction 1 still sees the same set of records as it did at the beginning of the transaction,

but new rows (inserted by Transaction 2) would be "phantoms" and not visible to Transaction

1.

Use Case: Used in situations where consistency in repeated reads is essential, such as generating

reports where results must not change during the transaction. However, concurrency is still

allowed, meaning other transactions can insert new records, as long as they don't affect the

transaction's current results.

4. Serializable

• Description: The Serializable isolation level is the highest level of isolation and ensures that

transactions are executed in a way that guarantees serializability, meaning the results of

concurrent transactions are as if they were executed sequentially (one after the other).

• Consequences: This isolation level prevents dirty reads, non-repeatable reads, and phantom

reads. It essentially locks the data involved in the transaction for the duration of the

transaction.

o Serializable transactions behave as if they are executed serially, even when they are

actually being executed concurrently.

Example:

• Transaction 1 reads and locks a set of rows.

• Transaction 2 cannot modify or even read the locked rows until Transaction 1 has finished

and committed.

• The transactions are executed in a way that no other transaction can interfere, providing

complete isolation.

Use Case: This isolation level is used when consistency is of utmost importance, and the

application cannot tolerate any anomalies, such as financial transactions or banking systems.

Implementation of Isolation Levels

The implementation of isolation levels is usually done using locks and scheduling techniques in

DBMS. Here's a brief overview of how DBMS systems implement these isolation levels:

1. Locking Protocols:

• Read Uncommitted: No locks or shared locks are placed on data. Any transaction can read

any data, even if it is being modified by another transaction.

• Read Committed: Shared locks are used for reading, and exclusive locks are used for writing.

Once a transaction commits, the locks are released.

• Repeatable Read: Shared locks are used to read data, and they are held for the duration of

the transaction to prevent other transactions from modifying the data being read.

• Serializable: Range locks and key locks are used to ensure no other transaction can insert,

delete, or modify data that could affect the outcome of the transaction.

2. Timestamp Ordering (for Serializable):

• In some DBMS implementations (especially for the Serializable level), a timestamp ordering

protocol is used. Each transaction is given a unique timestamp, and transactions are ordered

based on these timestamps to ensure serializability.

• A transaction is only allowed to access data that was committed before its timestamp. This

prevents conflicts and guarantees serial execution order.

3. Two-Phase Locking (2PL):

• As discussed earlier, the Two-Phase Locking protocol is often used to ensure that

transactions meet certain isolation requirements. In Strict 2PL, for example, a transaction

holds all locks until it commits, ensuring Serializable isolation.

4. Optimistic Concurrency Control:

• This approach is typically used for Read Committed or Repeatable Read isolation levels.

Transactions execute without acquiring locks, but before committing, the system checks

whether any data has been modified by another transaction in the meantime. If so, the

transaction is rolled back; otherwise, it commits.

Isolation Level Comparison:

Isolation Level Dirty Read
Non-Repeatable

Read

Phantom

Read
Locks

Read

Uncommitted
Allowed Allowed Allowed No or very few locks

Read Committed
Not

Allowed
Allowed Allowed Shared locks for reading

Repeatable Read
Not

Allowed
Not Allowed Allowed Shared locks for reading

Serializable
Not

Allowed
Not Allowed Not Allowed

Strict locking, prevents

changes

8b) Multiple Granularity Locking in DBMS

Multiple Granularity Locking is a technique used in Database Management Systems (DBMS) to

manage locks at different levels of data granularity (i.e., at different "sizes" of data). Instead of

locking data at just the individual data item level (such as a single record), multiple granularity

locking allows locks to be placed on different levels of the database hierarchy, such as:

• Database

• Table

• Page

• Tuple (Row)

• Field (Column)

This approach helps balance concurrency and data consistency, as it can allow more flexible and

efficient locking. By locking data at various levels, a DBMS can increase concurrency by allowing

some transactions to access different parts of the database while still ensuring correctness and

serializability.

Granularity of Locks

Locks in multiple granularity locking are applied to different data units, each having its own level of

granularity:

1. Database-level locks:

o A lock is applied to the entire database.

o It is the coarsest level of granularity.

o When a transaction holds a database lock, it has exclusive access to the entire

database, preventing other transactions from accessing any part of the database.

2. Table-level locks:

o A lock is applied to an entire table.

o When a transaction holds a table lock, it prevents other transactions from accessing

or modifying the data in that table.

3. Page-level locks:

o A lock is applied to a page (a block of data storage that contains multiple rows).

o This is a middle granularity level, balancing between access to specific rows and the

entire table.

4. Row-level locks:

o A lock is applied to a single row or tuple in a table.

o This is a finer granularity than table-level or page-level locks and allows for the

highest concurrency because it minimizes the locking scope, but it also comes with

the overhead of managing many more locks.

5. Field-level locks:

o A lock is applied to a specific field or column in a row.

o This is the finest level of granularity, and it provides the most concurrent access to

the database. However, it is also complex to manage and often not supported by all

DBMS systems.

Locking Modes

In multiple granularity locking, a transaction can request a lock at different levels, and it can use

various types of lock modes to determine what kind of access it needs. These lock modes are:

1. Shared (S) Lock:

o Allows a transaction to read the data but prevents other transactions from modifying

it.

o Multiple transactions can hold shared locks on the same data at the same time.

2. Exclusive (X) Lock:

o Prevents other transactions from reading or modifying the data.

o Only one transaction can hold an exclusive lock at a time on a particular data item.

3. Intention Shared (IS) Lock:

o Indicates that the transaction intends to acquire shared locks on lower levels (e.g.,

individual rows or fields) of the data.

o Allows transactions to share access at higher levels (like a table) while still being able

to acquire more specific locks at lower levels.

4. Intention Exclusive (IX) Lock:

o Indicates that the transaction intends to acquire exclusive locks on lower levels of

the data.

o This lock mode ensures that no other transactions can acquire shared or exclusive

locks on the lower-level data items.

5. Shared and Intention Exclusive (SIX) Lock:

o A combination of shared and intention exclusive locks. It allows a transaction to

have a shared lock on a higher-level unit (like a table) while intending to acquire

exclusive locks on lower-level units (like rows).

o This is useful for balancing read and write access across the database.

Multiple Granularity Locking Protocol

The Multiple Granularity Locking Protocol (MGLP) defines rules for how locks can be applied at

various granularities and how locks must be managed to ensure serializability and prevent

deadlocks.

1. Parent-Child Relationship:

o In a hierarchical structure (such as a table, page, or row), a parent lock (such as a

table lock) must be acquired before a child lock (such as a row or page lock) can be

requested.

o For example, to acquire a row lock, a transaction must first acquire a table lock at

the higher level, ensuring that the transaction will not violate the consistency of the

data.

2. Lock Compatibility:

o The protocol requires that locks at higher levels (e.g., table or database) may not

conflict with locks at lower levels (e.g., row or page).

o For example, a transaction that has an intention shared (IS) lock on a table can still

acquire shared (S) locks on individual rows within the table, but it cannot acquire an

exclusive (X) lock on any row in the table until it has finished with the IS lock on the

table.

3. Upward Propagation of Locks:

o A transaction that holds a lock on a lower-level object (like a row) must also hold a

lock at the higher-level object (like the table or page) to avoid conflicts.

o For instance, if a transaction holds a row lock, it must also hold an intention

exclusive (IX) lock on the parent table.

Example of Multiple Granularity Locking

Let’s consider a database with a table of employees. This table has multiple rows, and each row

represents a different employee's data.

• Transaction 1 intends to update the salary of one employee. It would first acquire a shared

(S) lock on the table to ensure no other transaction can modify the structure of the table.

Then, it would acquire an exclusive (X) lock on the specific row representing that employee’s

data.

• Transaction 2, meanwhile, wants to read all employee data. It could acquire a shared (S) lock

on the table to read the rows but would avoid locking any individual rows with an exclusive

lock, allowing more concurrency.

• Transaction 3 wants to modify the table structure (e.g., adding a new column). It would

acquire an exclusive (X) lock on the table, preventing any other transaction from accessing

or modifying the table until the schema modification is complete.

Advantages of Multiple Granularity Locking

1. Increased Concurrency:

o By allowing locks to be applied at different granularities (database, table, row),

DBMS can achieve higher concurrency compared to locking everything at the most

granular level (i.e., row or field).

2. Flexibility:

o The protocol offers flexibility, allowing transactions to operate at the level of

granularity required for their task while still ensuring that consistency is maintained.

3. Better Resource Utilization:

o Coarser-grained locks (like on tables) reduce the overhead of managing a large

number of locks compared to finer-grained locking schemes (like row or field-level

locks), leading to more efficient resource utilization.

4. Reduced Deadlocks:

o Multiple granularity locking helps in reducing the likelihood of deadlocks by imposing

clear rules on lock acquisition and release, ensuring that transactions follow a

hierarchical locking order.

Disadvantages of Multiple Granularity Locking

1. Complexity:

o Managing locks at multiple levels introduces complexity in both implementation and

monitoring. The system needs to keep track of all lock acquisitions and releases, as

well as handle issues like deadlock detection.

2. Overhead:

o Although multiple granularity allows for more flexibility, it can lead to additional

locking overhead, especially in systems with a large number of transactions and data

items.

3. Risk of Deadlocks:

o Even though the protocol reduces deadlocks, it doesn’t eliminate them entirely. If

transactions acquire locks at multiple levels in conflicting orders, deadlocks can still

occur.

9a) In a Database Management System (DBMS), logs are critical for ensuring data integrity and

recoverability in the event of a system crash or a transaction failure. The process of using logs for

recovery is a key part of transaction management and is tightly tied to the ACID properties,

especially atomicity and durability.

What Is a Log?

A log is a sequential record maintained by the DBMS that stores information about all the

transactions and the changes they make to the database.

Each entry in the log typically contains:

• Transaction ID

• Type of operation (e.g., write, commit)

• Data item being modified

• Old value (before modification)

• New value (after modification)

• Timestamps

Purpose of the Log

1. To Recover from a System Crash (e.g., power failure, OS crash)

2. To Rollback Uncommitted Transactions (e.g., due to errors or aborts)

How Logging Helps in Recovery

1. Write-Ahead Logging (WAL)

Most DBMSs use the Write-Ahead Logging (WAL) protocol:

Before any change is made to the database, the log must be written to disk.

This ensures that even if the system crashes after the log is written but before the data is written to

disk, the log can still be used to redo or undo changes.

2. Recovery Using Logs After a System Crash

When a system crashes, the DBMS performs two types of operations during recovery:

REDO (Reapply Committed Changes)

• If a transaction committed before the crash, its operations must be redone to ensure that all

its changes are reflected in the database.

UNDO (Rollback Uncommitted Changes)

• If a transaction did not commit before the crash, any partial changes must be undone using

the log.

Recovery Process Using Logs: Step-by-Step

Step 1: Analyze the Log

• Scan the log from the beginning to identify:

o Which transactions were committed

o Which were active (not committed) at the time of the crash

Step 2: UNDO Active Transactions

• For each uncommitted transaction, perform an UNDO using the old values in the log.

• This restores the database to the state before the transaction began.

Step 3: REDO Committed Transactions

• For each committed transaction, reapply its changes using the new values from the log to

ensure durability.

Example

Let's assume a log with the following entries:

Time Operation Data Item Old Value New Value

T1 Start Transaction

T1 Write(A) A 50 60

T1 Write(B) B 20 30

T1 Commit

T2 Start Transaction

T2 Write(A) A 60 70

 System Crash

After Recovery:

• T1 is committed, so its changes to A and B are REDONE.

• T2 is not committed, so its change to A is UNDONE (restored to 60).

Rollback Using Log

A rollback is the manual or automatic reversal of all actions performed by a transaction that has not

completed successfully.

Rollback Steps:

1. DBMS checks the log for all write operations by the transaction.

2. It reverses the changes using the old values in the log.

3. Once all changes are undone, a "Transaction Aborted" log record is written.

Example:

Log Entry

T3 Start

T3 Write(X): 100→90

T3 Write(Y): 200→180

T3 Rollback

→ After rollback,

• X = 100

• Y = 200

(from old values in log)

9b) What is a Checkpoint in DBMS?

A checkpoint is a snapshot of the database at a specific point in time. It is used to minimize recovery

time after a system crash.

Purpose of a Checkpoint:

• Reduces the number of log records the system must process during recovery.

• Helps truncate old logs that are no longer needed.

• Improves efficiency of crash recovery.

How Checkpoint Works

At the time of a checkpoint, the DBMS:

1. Writes all modified (dirty) pages from memory (buffer cache) to disk.

2. Writes a checkpoint log record noting that all previous changes are now safely stored on

disk.

3. Removes or archives old logs before the checkpoint since they’re no longer needed for

recovery.

Example:

Imagine the following sequence of events:

Time → T1 Start → T1 Write(A) → T2 Start → T2 Write(B) → CHECKPOINT → T2 Commit

If the system crashes after the checkpoint, recovery only needs to consider log entries after the

checkpoint.

Fuzzy Checkpointing

A fuzzy checkpoint is a non-blocking checkpoint that allows transactions to continue executing

while the checkpoint is in progress.

This is used in modern DBMSs to avoid halting the system during checkpointing.

Key Characteristics:

• No transaction is paused while the checkpoint is happening.

• The system marks the active transactions and dirty pages at the time the checkpoint starts.

• It may write data to disk in stages while allowing updates to continue.

• Ensures that recovery can still work by using logs to cover any pages that were not flushed

yet.

Comparison: Checkpoint vs Fuzzy Checkpoint

Feature Regular Checkpoint Fuzzy Checkpoint

Blocking May block transactions briefly Non-blocking (transactions continue)

Recovery Time Faster if frequent Slightly more complex due to concurrency

Complexity Simpler More complex (needs tracking of changes)

Use Case Basic DBMS or periodic logging Modern, high-performance DBMS

Visualization

Memory (Buffer) Disk Log File

[Page A*] ----> [Page A] ← Log: T1 writes A, T2 writes B

[Page B*] ----> [Page B] (before checkpoint)

Checkpointing

Dirty pages written to disk

Checkpoint record added to log

[Page A] ✓

[Page B] ✓

Later:

→ If crash occurs, recovery starts from checkpoint log record.

→ Only transactions active after checkpoint are redone or undone.

In fuzzy checkpointing, some pages may not have been flushed yet, so recovery will:

1. Use the checkpoint record as a base.

2. Redo all committed changes after the checkpoint (even if some were not flushed yet).

3. Undo uncommitted changes using log.

10a) Buffer management is a core component of a Database Management System (DBMS) that

manages data transfer between disk and main memory (RAM). Since accessing data from disk is

much slower than accessing it from memory, buffer management plays a key role in improving

performance by minimizing direct disk I/O operations.

Why Buffer Management Is Needed

• Databases are too large to fit entirely in memory.

• Disk I/O is expensive and time-consuming.

• Frequently accessed data should be cached in memory (buffer pool).

• Buffer management ensures efficient use of memory and quick data access.

Key Concepts

1. Buffer Pool

• A reserved area in main memory used to cache database pages.

• Consists of fixed-size blocks (also called frames).

• When a page is needed, it's loaded from disk into the buffer if not already present.

2. Page

• A unit of data transfer between disk and memory (usually 4KB–16KB).

• The database is read/written in terms of pages, not individual rows or columns.

Working of Buffer Management

1. Page Request:

o A transaction requests a data page.

o Buffer manager checks if the page is already in memory.

2. Page Hit:

o If the page is in memory, it is returned immediately (fast access).

3. Page Miss:

o If the page is not in memory, it is fetched from disk into the buffer pool.

o If the buffer pool is full, a page must be replaced using a replacement policy.

4. Modified Pages (Dirty Pages):

o If a page is modified in memory, it is marked as a dirty page.

o Dirty pages must be written back to disk before being replaced to avoid data loss.

Buffer Replacement Policies

When the buffer pool is full, the DBMS must decide which page to evict. Common strategies include:

Policy Description

LRU (Least Recently Used) Replaces the page that hasn’t been used for the longest time.

MRU (Most Recently Used) Replaces the most recently used page.

FIFO (First-In First-Out) Replaces the page that entered the buffer first.

Clock Approximate LRU using a circular list and reference bits.

Pinning and Unpinning

• Pinning a page: Marks it as “in use” so it can't be replaced.

• Unpinning: After a transaction finishes using the page, it unpins it, allowing it to be replaced

if needed.

Write Strategies

1. Write-Through:

• Immediately writes changes to disk.

• Safer but slower.

2. Write-Back (Deferred Write):

• Writes only when the page is evicted from the buffer.

• Faster but riskier (needs proper recovery mechanisms like logs).

Example

Imagine a buffer pool with 3 frames, and a transaction wants to read the following page sequence:

less

CopyEdit

Request sequence: A, B, C, A, D

• A, B, C → Loaded into buffer (3 slots used)

• A → Already in buffer (hit)

• D → Buffer full, use LRU to replace B (least recently used)

10b) In a Database Management System (DBMS), UNDO and REDO are mechanisms used to

maintain consistency and recover from errors such as system crashes or transaction failures. They

are part of the recovery management system, which ensures atomicity and durability—two key

ACID properties.

UNDO

Definition:

UNDO refers to the process of reversing the changes made by a transaction that did not commit

successfully.

Purpose:

• To abort a transaction.

• To remove partial or uncommitted changes from the database.

• To restore the database to the state before the transaction began.

Example:

If a transaction modifies a balance from ₹1000 to ₹1200 but crashes before committing, UNDO

restores the balance back to ₹1000.

Uses:

• Manual rollback by user.

• Automatic rollback on system crash.

• Aborting failed or deadlocked transactions.

REDO

Definition:

REDO refers to the process of reapplying changes of a committed transaction that might not have

been permanently written to disk at the time of a system crash.

Purpose:

• To ensure durability.

• To replay committed transactions and ensure their effects are reflected in the database.

Example:

If a transaction commits after updating a balance from ₹1000 to ₹1200, but the system crashes

before writing it to disk, REDO re-applies the change so the balance becomes ₹1200.

Uses:

• Crash recovery after system failure.

• Re-establishing committed changes from logs.

