

CMR
INSTITUTE

OF
TECHNOLOGY

USN

VTU Theory Examination April. 2025

Sub: Web Technologies Code: MMC105

Answer Key Marks OBE

CO RB
T

Q1(a) Define HTTP. Explain the different phases of HTTP.
●​ HTTP
What is HTTP?
HTTP (Hypertext Transfer Protocol) is the foundational communication
protocol used for transferring data over the web. It enables the exchange of
information between a client (such as a web browser) and a server (where the
website or resource is hosted).
HTTP is a stateless protocol, meaning each request is independent, and no
connection information is retained between requests.
Features of HTTP:
1.​ Request-Response Model:

The client sends an HTTP request to the server.
The server processes the request and sends back an HTTP
response.

2.​ Stateless:
Each HTTP request is treated as an independent interaction, with
no memory of previous requests.

3.​ Human-Readable:
HTTP messages are plain text, making them easy to read and
debug.

4.​ Flexible:
HTTP can transmit various types of data, such as HTML, images,
videos, JSON, etc.

How HTTP Works:
1.​ A user enters a URL (e.g., http://www.example.com) into a web
browser.
2.​ The browser sends an HTTP request to the web server hosting the
domain example.com.
3.​ The web server processes the request and returns an HTTP response,
which contains the requested resource (e.g., a web page).
4.​ The browser renders the received data into a readable format for the
user.

HTTP Methods:
HTTP defines several methods (also called verbs) for different types of
operations:
1.​ GET:

HOST:/test/demo_form.php?name1=value1&name2=value2
GET requests can be cached
GET requests remain in the browser history

10

L2 CO1

GET requests can be bookmarked
GET requests should never be used when dealing with sensitive
data
GET requests have length restrictions
GET requests are only used to request data (not modify)

2.​ POST:

​ Host: w3schools.com
o​ POST requests are never cached
o​ POST requests do not remain in the browser history
o​ POST requests cannot be bookmarked
o​ POST requests have no restrictions on data length

3.​ PUT:

PUT is used to send data to a server to create/update a resource.
The difference between POST and PUT is that PUT requests are
idempotent. That is, calling the same PUT request multiple times
will always produce the same result. In contrast, calling a POST
request repeatedly have side effects of creating the same resource
multiple times.

4.​ DELETE:
Deletes a resource on the server.

5.​ HEAD:
HEAD is almost identical to GET, but without the response body.
In other words, if GET /users returns a list of users, then HEAD
/users will make the same request but will not return the list of
users.
A HEAD request is useful for checking what a GET request will
return before actually making a GET request - a HEAD request
can read the Content-Length header to check the size of the file,
without actually downloading the file.

6.​ OPTIONS:
Describes the communication options for the resource.

7.​ PATCH:
Partially updates a resource.

HTTP Status Codes:
Servers use status codes in HTTP responses to indicate the result of a request:

2xx (Success): The request was successful (e.g., 200 OK).
3xx (Redirection): The client is redirected to another location (e.g., 301
Moved Permanently).
4xx (Client Error): There was an error with the client request (e.g., 404
Not Found).
5xx (Server Error): The server failed to process the request (e.g., 500
Internal Server Error).

Q1(b) Discuss the basic structure of XHTML documents. Also explain the rules to be
followed to make use of HTML elements in XHTML documents.
Basic Structure of XHTML Documents
XHTML (Extensible Hypertext Markup Language) is a reformulation of HTML
as an XML application. It combines the flexibility of HTML with the strictness
of XML. Because of its XML roots, XHTML documents must follow stricter
syntax rules than traditional HTML.
Here’s the basic structure of an XHTML document:
<?xml version="1.0" encoding="UTF-8"?>

10

L2 CO1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Example XHTML Page</title>
 </head>
 <body>
 <h1>Hello, XHTML!</h1>
 <p>This is a sample XHTML document.</p>
 </body>
</html>

Breakdown of Structure:

1.​ XML Declaration: <?xml version="1.0" encoding="UTF-8"?> –
Optional but recommended, specifies XML version and character
encoding.​

2.​ DOCTYPE Declaration: Defines the document type and DTD
(Document Type Definition) used.​

3.​ Root Element <html>:​

○​ Must include the XML namespace:
xmlns="http://www.w3.org/1999/xhtml"​

4.​ Head Section: Contains metadata, including <title>.​

5.​ Body Section: Contains visible content like headings, paragraphs, etc.​

Rules for Using HTML Elements in XHTML Documents
Because XHTML is based on XML, it must conform to strict syntax rules. The
key rules include:

1.​ All tags must be properly closed:
○​ Example:
, <hr />,
○​ Even empty elements must be closed.​

2.​ All tags must be properly nested:​

○​ Correct: <p>Bold text</p>
○​ Incorrect: <p>Bold text</p>

3.​ All tag names and attributes must be in lowercase:
○​ XHTML is case-sensitive, unlike HTML.
○​ Use not

4.​ Attribute values must be quoted:
○​ Correct: <input type="text" value="Name" />
○​ Incorrect: <input type=text value=Name>

5.​ Documents must have a DOCTYPE declaration:
○​ This helps browsers render the document correctly and validates

the structure.
6.​ The root element must include the XHTML namespace:

○​ Example: <html xmlns="http://www.w3.org/1999/xhtml">
7.​ Avoid deprecated elements and attributes:

○​ Use CSS for styling instead of older attributes like align, bgcolor,
etc.

Q2(a) Briefly explain the following:
1.​ URL 2. MIME 3. Web server 4. Web Browser
●​ URL

10
L2 CO1

A URL (Uniform Resource Locator) is the unique address used to identify
and access resources on the internet, such as web pages, files, or images. It
specifies where a resource is located and how to retrieve it.
Components of a URL
1.​ Protocol:

Indicates the communication protocol to use (e.g., HTTP,
HTTPS, FTP).

2.​ Domain:
Identifies the server hosting the requested resource.
Can be a human-readable name (e.g., example.com) or an
IP address (e.g., 192.168.1.1).
Case insensitive.

3.​ Port (Optional):
Specifies the port number to connect to on the server.
Default ports are determined by the protocol:

HTTP: Port 80.
HTTPS: Port 443.

Non-default ports can be specified using a colon after the
domain, e.g., http://example.com:888/.

4.​ Path (Optional):
Represents the location of a file or directory on the server.
Follows the domain, e.g.,
http://example.com/files/image.jpg.
Case-sensitive on most servers (except some
Windows-based servers).
If not specified, the server serves the default file (e.g.,
index.html or default.html).

5.​ Query String (Optional):
Provides key-value pairs for additional information, often
from user input or form submissions.
Begins with a ? symbol, with key-value pairs separated by
&.
Example:
http://example.com/page?username=john&password=abc
123.

6.​ Fragment (Optional):
Points to a specific part of the resource, typically within a
webpage.
Starts with a # symbol.
Example: http://example.com/page#section1 directs the
browser to the section1 anchor within the page.

●​ MIME
What is MIME?
MIME stands for Multipurpose Internet Mail Extensions, a standard that
extends the format of email to support text in different character sets,
attachments such as images, audio, video, and application files, and other
multimedia formats. Although originally developed for email, MIME types
are now widely used in the context of the Web, where they describe the nature
and format of a file or data.

http://example.com/page?username=john&password=abc123
http://example.com/page?username=john&password=abc123

Key Features of MIME
1.​ Content Description:

Specifies the type of data being sent.
Examples: Text, image, video, audio, etc.

2.​ Encodings:
Allows non-text data to be encoded in text-based formats for
transmission (e.g., Base64).

3.​ Multipart Messages:
Supports messages with multiple parts (e.g., an email with both
text and an attachment).

4.​ Cross-Application Usage:
Used by web browsers, servers, and email clients to handle and
interpret file formats correctly.

●​ web servers
What is a Web Server?
A web server is a computer system or software application that serves content
to users over the internet. It processes requests made through the Hypertext
Transfer Protocol (HTTP) or its secure version, HTTPS, and delivers the
requested resources, such as web pages, images, or files.

How a Web Server Works:
1.​ Request Handling:

A user types a URL in their browser or clicks a link.
The browser sends an HTTP request to the web server.

2.​ Response Generation:
The web server processes the request.
If the resource exists, it sends back the content (e.g., HTML,
CSS, JavaScript files).
If not, the server returns an error code like 404 Not Found.

3.​ Browser Rendering:
The browser displays the returned data to the user.

Web Servers and the LAMP Stack: Overview
A web server is essentially a computer that responds to HTTP requests and
delivers web content. It can range from a simple personal computer (like Tim
Berners-Lee’s first web server) to powerful servers in large-scale web farms.
Key Components of a Web Server:
1.​ Operating Systems (OS):

Commonly used OS: Linux (preferred for its uptime, lower
memory usage, and remote management).

Windows is also widely used, especially in enterprises adopting
Microsoft tools.

2.​ Web Server Software:
Apache: Open-source, widely used, supports Linux, Windows,
and Mac.
IIS (Internet Information Services): Microsoft’s web server
software, tightly integrated with the .NET framework.

3.​ Database Software:
For dynamic websites, databases are essential.
Common open-source options: MySQL, SQLite.
Proprietary choices: Microsoft SQL Server, Oracle, IBM DB2.

4.​ Scripting/Server-Side Software:
LAMP stack often uses PHP, but other options include Python,
Ruby on Rails, or ASP.NET.
PHP is popular for its ease of use, widespread support, and
compatibility with HTTP.

The LAMP Stack:
●​ Linux (Operating System)
●​ Apache (Web Server)
●​ MySQL (Database Management System)
●​ PHP (Server-Side Scripting Language)
●​ What is a Web Browser?

A web browser is a software application that facilitates access to the World
Wide Web (WWW) by acting as an intermediary between the client (user) and
the server. It enables users to request web documents and services from
servers, interprets the received data (usually in HTML), and renders it as a
user-friendly web page containing text, images, links, and interactive
elements. Common web browsers include Google Chrome, Mozilla Firefox,
Safari, and Microsoft Edge.

History of Web Browsers
1.​ WorldWideWeb (1990):

​ ​ ​ Invented by Tim Berners-Lee; later renamed Nexus.
​ ​ ​ First web browser and editor.

2.​ Netscape Navigator (1994):
​ ​ ​ An advanced version of Mosaic, developed by Marc Andreessen.
​ ​ ​ Played a major role in the browser wars of the 1990s.

3.​ Internet Explorer (1995):
​ ​ ​Launched by Microsoft as the default browser for Windows OS.
​ ​ ​Dominated the market for years.

4.​ Modern Browsers:
​ ​ ​Mozilla Firefox, Google Chrome, Safari, Opera, and others followed,
each offering unique features like speed, privacy, and integration.

How Does a Web Browser Work?
A web browser operates using the client-server model:
1.​ Client Request.
2.​ Server Response:

​ ​ ​The server processes the request and sends back the required resource,
typically in the form of HTML, CSS, JavaScript, and media files.

3.​ Rendering:
​ ​ ​The browser interprets the received data, converts it into a graphical
format, and displays the content on the screen.

4.​ Cookies:
​ ​ ​ Small files stored by the browser to retain user preferences, session data,
and browsing patterns.Used by websites for personalization and targeted
advertising.

Q2(b) Explain the following tags with examples.
1.​ Heading tag 2. Hypertext link tag 3. Image tag 4. Progress tag

1. Heading Tag (<h1> to <h6>)
The heading tags are used to define headings in a web page. There are six levels
of headings:

●​ <h1> is the largest and most important​

●​ <h6> is the smallest
<h1>Main Title</h1>
<h2>Subheading</h2>
<h3>Section Title</h3>
<h4>Subsection</h4>
<h5>Minor Heading</h5>
<h6>Smallest Heading</h6>

2. Hypertext Link Tag (<a>)
The <a> tag defines a hyperlink, which is used to link from one page to another.
Syntax:
Link Text

Example:
Visit Example

href specifies the destination URL.​

Clicking the text "Visit Example" will navigate to the specified URL.
3. Image Tag ()
The tag is used to embed images in a webpage. It is a self-closing tag.
Syntax:

Example:

●​ src: Path to the image file.​

●​ alt: Alternative text for accessibility or if image fails to load.​

●​ width and height: Optional attributes to specify image dimensions.​

4. Progress Tag (<progress>)
The <progress> tag represents the completion progress of a task. It is useful for
showing loading bars or task completion percentages.
Syntax:

10

L2 CO1

<progress value="current" max="maximum">Fallback text</progress>

Example:
<label for="progress">Downloading:</label>
<progress id="progress" value="70" max="100">70%</progress>

value: Current progress.​

max: Maximum value (typically 100).​

The progress bar will appear 70% filled in this case.

Q3(a) Discuss on the different ways of including CSS style information to a HTML
document.

There are three main ways to include CSS (Cascading Style Sheets) in an
HTML document to style its elements:

1. Inline CSS

●​ CSS is written directly within an HTML element using the style
attribute.​

●​ Best used for quick, one-time styling.​

●​ Not recommended for larger projects due to poor maintainability.​

Example:
<p style="color: blue; font-size: 16px;">This is a blue paragraph.</p>

2. Internal CSS (Embedded CSS)

●​ CSS is placed inside a <style> tag within the <head> section of the
HTML document.​

●​ Useful for applying styles to a single HTML document.​

Example:

<!DOCTYPE html>
<html>
<head>
 <style>
 body {
 background-color: #f2f2f2;
 }
 h1 {
 color: darkgreen;
 }
 p {
 font-family: Arial;
 }
 </style>
</head>

 10

L2 CO2

<body>
 <h1>Welcome</h1>
 <p>This is an example using internal CSS.</p>
</body>
</html>

3. External CSS

●​ CSS is written in a separate .css file and linked to the HTML using the
<link> tag.​

●​ Best for styling multiple pages consistently and efficiently.​

CSS File (styles.css):
body {
 background-color: light yellow;
}
h1 {
 color: navy;
}

HTML File:
<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="styles.css" />
</head>
<body>
 <h1>External CSS Example</h1>
</body>
</html>

Q3(b) Name any five CSS selectors and explain their uses with a suitable example.

1. Universal Selector (*)

●​ Use: Applies styles to all elements on the page.​

●​ Syntax: * { property: value; }​

Example:
* {
 margin: 0;
 padding: 0;
 box-sizing: border-box;
}

This removes default margin and padding from all elements.

2. Element Selector (Tag Selector)

●​ Use: Targets all HTML elements of a specific type.​

10 L3 CO2

●​ Syntax: elementName { property: value; }​

Example:
p {
 color: green;
 font-size: 16px;
}

Styles all <p> (paragraph) elements with green text.

3. Class Selector (.)

●​ Use: Targets all elements with a specific class attribute.​

●​ Syntax: .className { property: value; }​

Example:
.highlight {
 background-color: yellow;
}

<p class="highlight">This paragraph is highlighted.</p>

4. ID Selector (#)

●​ Use: Targets a single element with a specific id.​

●​ Syntax: #idName { property: value; }​

Example:

#header {
 text-align: center;
 font-size: 24px;
}

<h1 id="header">Welcome!</h1>

Q4(a) Explain the various ways of creating arrays in javascript. Mention any 5 array
methods and Explain their use.

Ways of Creating Arrays in JavaScript

JavaScript provides several ways to create arrays. Here are the main methods:

1. Using Array Literals (Most Common Way)
let fruits = ["apple", "banana", "cherry"];

2. Using the Array Constructor
let colors = new Array("red", "green", "blue");

Note: new Array(3) creates an array with 3 empty slots (not actual values).

10 L2 CO2

3. Using Array.of()

let numbers = Array.of(1, 2, 3, 4);

Creates a new array with the given elements.

Useful Array Methods with Explanation

1. push()

●​ Use: Adds one or more elements to the end of an array.​

let fruits = ["apple", "banana"];

fruits.push("mango");

console.log(fruits); // ["apple", "banana", "mango"]

2. pop()

●​ Use: Removes the last element from an array and returns it.​

let nums = [1, 2, 3];

let last = nums.pop();

console.log(last); // 3

console.log(nums); // [1, 2]

3. shift()

●​ Use: Removes the first element from an array.​

let names = ["John", "Jane", "Jim"];

names.shift();

console.log(names); // ["Jane", "Jim"]

4. unshift()

●​ Use: Adds one or more elements to the beginning of an array.​

let colors = ["blue", "green"];

colors.unshift("red");

console.log(colors); // ["red", "blue", "green"]

5. forEach()

●​ Use: Executes a function for each element in the array.​

let numbers = [1, 2, 3];

numbers.forEach(function(num) {

 console.log(num * 2);

});

// Output: 2, 4, 6

Q4(b) Write a Javascript program that accepts.
1.​ Input: A number n output: The first n Fibonacci numbers
2.​ Input: A number n output: A table of numbers from 1 to n and their

squares
1.The first n Fibonacci numbers

function generateFibonacci(n) {
 let fibSeries = [];

 for (let i = 0; i < n; i++) {
 if (i === 0) {
 fibSeries.push(0);
 } else if (i === 1) {
 fibSeries.push(1);
 } else {
 fibSeries.push(fibSeries[i - 1] + fibSeries[i - 2]);
 }
 }

 return fibSeries;
}

// Example usage:
let n = 10; // You can change this value
let result = generateFibonacci(n);
console.log(`The first ${n} Fibonacci numbers are:`);
console.log(result.join(", "));

2. A table of numbers from 1 to n and their squares

<!DOCTYPE html>
<html>
<head>
 <title>Squares Table</title>
</head>
<body>
 <h3>Enter a number:</h3>
 <input type="number" id="numInput" />
 <button onclick="generateTable()">Generate Table</button>

 <h3>Number-Square Table:</h3>
 <div id="outputTable"></div>

 <script>
 function generateTable() {
 const n = parseInt(document.getElementById("numInput").value);
 if (isNaN(n) || n <= 0) {
 alert("Please enter a positive number.");
 return;

10 L3 CO2

 }

 let html = "<table border='1'
cellpadding='5'><tr><th>Number</th><th>Square</th></tr>";
 for (let i = 1; i <= n; i++) {
 html += `<tr><td>${i}</td><td>${i * i}</td></tr>`;
 }
 html += "</table>";
 document.getElementById("outputTable").innerHTML = html;
 }
 </script>
</body>
</html>

Q5(a) Explain Document object model(DOM) with examples.

Document Object Model (DOM) in JavaScript

The Document Object Model (DOM) is a programming interface provided by
the browser that represents an HTML or XML document as a tree structure.
Each element, attribute, and piece of text in the document becomes a node in
this tree.

🔹 Why DOM is Important

●​ Allows JavaScript to access and modify the content, structure, and style
of a webpage dynamically.​

●​ Enables interaction (e.g., responding to user input, updating content,
changing styles, etc.).​

DOM Tree Example for a Simple HTML Page
<!DOCTYPE html>
<html>
 <head>
 <title>Sample Page</title>
 </head>
 <body>
 <h1>Hello, DOM!</h1>
 <p>This is a paragraph.</p>
 </body>
</html>

DOM Tree Representation:
Document
 └── html
 ├── head
 │ └── title
 └── body
 ├── h1
 └── p

10 L2 CO3

Accessing DOM Elements in JavaScript
<body>
 <p id="demo">Hello!</p>
 <script>
 // Access the paragraph using getElementById
 let para = document.getElementById("demo");
 console.log(para.textContent); // Output: Hello!
 </script>
</body>

Common DOM Methods

Method Description

getElementById("id") Gets an element by its ID

getElementsByClassName("clas
s")

Gets elements by class

getElementsByTagName("tag") Gets elements by tag

querySelector("selector") Gets the first element matching a CSS
selector

createElement("tag") Creates a new element

appendChild(node) Adds a node as the last child

removeChild(node) Removes a child node

Q5(b) Write a javascript program to show handling of events from textbox and
password elements.
<!DOCTYPE html>
<html>
<head>
 <title>Textbox and Password Event Handling</title>
 <style>
 body {
 font-family: Arial;
 padding: 20px;
 }
 input {
 display: block;
 margin-bottom: 10px;
 padding: 8px;
 width: 250px;
 }
 #output {
 margin-top: 15px;
 font-weight: bold;
 color: green;
 }
 </style>
</head>
<body>

 <h2>Event Handling Demo</h2>

10 L3 CO3

 <label for="username">Username:</label>
 <input type="text" id="username" placeholder="Enter username">

 <label for="password">Password:</label>
 <input type="password" id="password" placeholder="Enter password">

 <div id="output"></div>

 <script>
 const usernameInput = document.getElementById('username');
 const passwordInput = document.getElementById('password');
 const outputDiv = document.getElementById

Q6(a) Briefly describe Window objects properties and methods.

Brief Description of window Object Properties and Methods in JavaScript

The window object is the global object in a web browser that represents the
current browser window or tab. It provides access to browser features such as
dialogs, timers, screen information, URL, storage, and more.

🔹 Common Properties of the window Object

Property Description

window.document Refers to the DOM (HTML
document).

window.location Contains info about the current URL.

window.innerWidth Width of the browser viewport in
pixels.

window.innerHeight Height of the browser viewport in
pixels.

window.navigator Information about the user's browser.

window.screen Screen-related info (height, width,
etc.).

window.history Allows navigation through browser
history.

window.localStorage Stores data with no expiration
(persistent).

window.sessionStorage Stores data until the browser tab is
closed.

🔹 Common Methods of the window Object

Method Description

10 L2 CO3

alert(message) Displays an alert dialog box.

confirm(message) Shows OK/Cancel dialog and returns true or
false.

prompt(message) Displays a prompt asking for user input.

open(url) Opens a new browser window or tab.

close() Closes the current window (if opened by
script).

setTimeout(func, ms) Executes a function after a delay.

setInterval(func, ms) Repeats a function at regular intervals.

print() Opens the browser print dialog.

Q6(b) Discuss Event handling. Explain it with an example.

BASIC CONCEPTS OF EVENT HANDLING
●​ One important use of JavaScript for Web programming is to detect

certain activities of the browser and the browser user and provide

computation when those activities occur. These computations are

specified with a special form of programming called event- driven

programming.

●​ In conventional (non-event-driven) programming, the code itself

specifies the order in which it is executed, although the order is

usually affected by the program’s input data.

●​ In event-driven programming, parts of the program are

executed at completely unpredictable times, often triggered

by user interactions with the program that is executing.

●​ An event is a notification that something specific has occurred,

either with the browser, such as the completion of the loading of a

document, or because of a browser user action, such as a mouse

click on a form button.

●​ An event handler is a script that is implicitly executed in response

to the appearance of an event. Event handlers enable a Web

document to be responsive to browser and user activities.

●​ One of the most common uses of event handlers is to check for

simple errors and omissions in user input to the elements of a form,

either when they are changed or when the form is submitted.

●​ This kind of checking saves the time of sending incorrect form data to the
server.

●​ Because events are JavaScript objects, their names are case

sensitive. The names of all event objects have only lowercase

10 L2 CO3

letters.

●​ Events are created by activities associated with specific XHTML elements.

●​ The process of connecting an event handler to an event is called registration.

●​ There are two distinct approaches to event handler registration,

one that assigns tag attributes and one that assigns handler

addresses to object properties.

EVENTS, ATTRIBUTES, AND TAGS

In many cases, the same attribute can appear in several different tags.

The circumstances under which an event is created are related to a tag

and an attribute, and they can be different for the same attribute when

it appears in different tags.

Q7(a) Briefly explain the following with examples:
1.​ AngularJS Number 2. AngularJS Strings

 3. AngularJS Objects 4. AngularJS Arrays

1.​ AngularJS Numbers

AngularJS handles numbers like regular JavaScript. You can use them for
calculations, display, or data binding.

Example:

html

10 L2 CO4

CopyEdit
<div ng-app="" ng-init="num1=10; num2=5">
 Sum: {{ num1 + num2 }}
</div>

Output:-

 This will display: Sum: 15

2.​ AngularJS Strings

Strings in AngularJS are just like in JavaScript. You can use them for names,
messages, etc.

Example:

html
CopyEdit
<div ng-app="" ng-init="message='Hello, AngularJS!'">
 {{ message }}
</div>

Output:-

 This will display: Hello, AngularJS!

3.​ AngularJS Objects

Objects in AngularJS are collections of key-value pairs. You can bind and
display object properties using expressions.

Example:

html
CopyEdit
<div ng-app="" ng-init="student={name:'Daya', age:25}">
 Name: {{ student.name }}

 Age: {{ student.age }}
</div>

Output:-

 This will display the name and age from the student object.

4.​ AngularJS Arrays

Arrays are ordered lists of data. You can iterate over them using ng-repeat.

Example:

html
CopyEdit
<div ng-app="" ng-init="fruits=['Apple', 'Banana', 'Mango']">

 <li ng-repeat="fruit in fruits">{{ fruit }}

</div>

Output:-

This will display a list of fruits.

Q7(b) Discuss the use of filters in AngularJS with an example.

Filters

10 L2 CO4

Q8(a) What is Angular JS? Explain the following AngularJS directives:
(i) ng_app (ii) ng_model (iii) ng_bind

❖​ What is AngularJS?

AngularJS is a JavaScript-based front-end framework developed by Google.
It is used to create dynamic, single-page web applications (SPAs). AngularJS
extends HTML by adding new attributes called directives, and binds data to
HTML using expressions.

🔹 Key Features of AngularJS:

●​ Two-way data binding​

●​ MVC architecture​

●​ Dependency injection​

●​ Directives for dynamic behavior​

●​ Templating using HTML​

❖​ Explanation of AngularJS Directives:

(i) ng-app

Purpose:​
 Defines the root element of an AngularJS application. It tells AngularJS where
to start compiling and initializing the app.

Example:

html
CopyEdit
<div ng-app="">
 <p>My First AngularJS App</p>
</div>

Output:-

AngularJS will activate within this <div>.

(ii) ng-model

Purpose:​
 Binds the value of an HTML control (input, select, textarea) to a variable in
the AngularJS application.

Example:

html
CopyEdit
<div ng-app="" ng-init="name='Daya'">
 <input type="text" ng-model="name">
 <p>You entered: {{ name }}</p>
</div>

10 L2 CO4

Output:-

 As you type in the input box, the value updates in real time.

(iii) ng-bind

Purpose:​
 Binds the value of an expression to the inner text of an HTML element (like {{
expression }}, but cleaner and safer).

Example:

html
CopyEdit
<div ng-app="" ng-init="course='MCA'">
 <p ng-bind="course"></p>
</div>

Output:-

 This will display: MCA

Q8(b) Explain AngularJS expressions. Write an Angular JS program to use
expressions.

Expressions

10 L3 CO4

Q9(a) What is AngularJS Services? Explain Them with examples.
Services

Angular Service Service is a function or an object, which is used to provide
with a specified action. In AngularJS, there are about 30 builtin services,
such as $http, $location, $interval and $timeout.

Types of Services in AngularJS

AngularJS provides several built-in services and also allows you to create
custom services. Here are some commonly used built-in services:

1.​ $http: For making AJAX requests.
2.​ $location: For handling URL manipulation.
3.​ $timeout: For delaying code execution.
4.​ $interval: For repeated execution at specified intervals.

10 L2 CO4

Creating a Custom Service

Custom services can be created using:

1.​ Factory
2.​ Service
3.​ Provider

1. Using Factory

A factory function returns an object or a function that is injected where
needed.

Example:

app.factory('mathService', function() {
 return {
 add: function(a, b) {
 return a + b;
 },
 subtract: function(a, b) {
 return a - b;
 }
 };
});

//Usage in a Controller:

// Inject the Service into a Controller
app.controller('mathController', function($scope, mathService) {
 $scope.addition = mathService.add(10, 5); // 15
 $scope.subtraction = mathService.subtract(10, 5); // 5
});

 Explanation:-

1.​ Factory (mathService) defines two methods:
○​ add(a, b) → Returns the sum.
○​ subtract(a, b) → Returns the difference.

2.​ Controller (mathController) calls these functions with 10 and 5,
storing the results in $scope.addition and $scope.subtraction.

3.​ The results are displayed in <p>{{ addition }}</p> and <p>{{
subtraction }}</p>.

2. Using Service

In AngularJS, a service is used to share reusable code across different
components like controllers, directives, or even other services

Example:

var app = angular.module('myApp', []);

// Simple Service that returns a static message

app.service('messageService', function() {

 this.getMessage = function() {

 return "Hello from AngularJS Service!";

 };

});

// Controller using the Service

app.controller('messageController', function($scope, messageService) {

 $scope.message = messageService.getMessage();

});

 Explanation:-

1.​ Service (messageService) defines a function getMessage() that returns
"Hello from AngularJS Service!".

2.​ Controller (messageController) calls messageService.getMessage() and
assigns the result to $scope.message.

3.​ The message "Hello from AngularJS Service!" is displayed inside
<p>{{ message }}</p>.

3. Using Provider

A provider gives you the most control over service creation. It is used when
you need to configure a service before making it available.

Example:

app.provider('messageService', function() {
 var prefix = '';

 this.setPrefix = function(value) {
 prefix = value;
 };

 this.$get = function() {

 return {
 getMessage: function(message) {
 return prefix + " " + message;
 }
 };
 };
});

// Configure the provider
app.config(function(messageServiceProvider) {
 messageServiceProvider.setPrefix('Hello');
});

app.controller('messageController', function($scope, messageService) {
 $scope.message = messageService.getMessage('AngularJS');
});

 Explanation:-

1.​ Provider (messageService)
○​ Has a variable prefix that stores a default greeting ("Hello").
○​ Has a method setPrefix(value) to change the prefix.
○​ Implements $get() that returns the actual service.

2.​ Configuration Phase (app.config)
○​ Changes the prefix to "Welcome".

3.​ Controller (messageController)
○​ Calls messageService.getMessage('AngularJS') to generate

"Welcome, AngularJS!".
4.​ Output on the page:

○​ "Welcome, AngularJS!" is displayed.

Built-in AngularJS Services

1. $http (For AJAX requests)

Used to communicate with a server.

Example:

<!DOCTYPE html>
<html>
<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></
script>
<body>

<div ng-app="myApp" ng-controller="myCtrl">

<p>Today's welcome message is:</p>

<h1>{{myWelcome}}</h1>

</div>

<p>The $http service requests a page on the server, and the response is set as
the value of the "myWelcome" variable.</p>

<script>
var app = angular.module('myApp', []);
app.controller('myCtrl', function($scope, $http) {
 $http.get("welcome.htm").then(function (response) {
 $scope.myWelcome = response.data;
 });
});
</script>

</body>
</html>

2. $timeout (For Delayed Execution)

Executes a function after a delay.

Example:

<!DOCTYPE html>
<html>
<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></
script>
<body>

<div ng-app="myApp" ng-controller="myCtrl">

<p>This header will change after two seconds:</p>

<h1>{{myHeader}}</h1>

</div>

<p>The $timeout service runs a function after a specified number of
milliseconds.</p>

<script>
var app = angular.module('myApp', []);
app.controller('myCtrl', function($scope, $timeout) {
 $scope.myHeader = "Hello World!";
 $timeout(function () {
 $scope.myHeader = "How are you today?";
 }, 2000);
});
</script>

</body>
</html>

3. $interval (For Repeated Execution)

Executes a function repeatedly at a specified time interval.

Example:

<!DOCTYPE html>
<html>
<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></
script>
<body>

<div ng-app="myApp" ng-controller="myCtrl">

<p>The time is:</p>

<h1>{{theTime}}</h1>

</div>

<p>The $interval service runs a function every specified millisecond.</p>

<script>
var app = angular.module('myApp', []);
app.controller('myCtrl', function($scope, $interval) {
 $scope.theTime = new Date().toLocaleTimeString();
 $interval(function () {
 $scope.theTime = new Date().toLocaleTimeString();
 }, 1000);
});
</script>

</body>
</html>

4. $location

The $location service has methods which return information about the
location of the current web page.the $location service is passed in to the
controller as an argument. In order to use the service in the controller, it must
be defined as a dependency.

AngularJS constantly supervises your application, and for it to handle
changes and events properly, AngularJS prefers that you use the $location
service instead of the window.location object.

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></
script>

<body>

<div ng-app="myApp" ng-controller="myCtrl">

<p>The url of this page is:</p>

<h3>{{myUrl}}</h3>

</div>

<p>This example uses the built-in $location service to get the absolute url of
the page.</p>

<script>

var app = angular.module('myApp', []);

app.controller('myCtrl', function($scope, $location) {

 $scope.myUrl = $location.absUrl();

});

</script>

</body>

</html>

Q9(b) Write an Angular JS program to demonstrate client-side form validation.

AngularJS Program to Demonstrate Client-Side Form Validation

In this example, we'll create a simple AngularJS form with client-side
validation. We'll validate that the user enters a valid name, email, and
password before submitting the form.

❖​ Key Features of AngularJS Form Validation:
●​ ng-required: Makes a field required.​

●​ ng-pattern: Validates the field based on a regular expression.​

●​ ng-minlength / ng-maxlength: Sets a minimum and maximum length

for text input.​

●​ ng-model: Binds input fields to model properties.​

10 L3 CO4

●​ $valid / $invalid: Indicates whether the form is valid or not.​

❖​ AngularJS Client-Side Form Validation Example:

<!DOCTYPE html>
<html>
<head>
 <title>AngularJS Form Validation</title>
<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></scri
pt>
</head>
<body>

<div ng-app="formApp" ng-controller="formCtrl">

 <h2>AngularJS Client-Side Form Validation Example</h2>

 <!-- Form -->
 <form name="userForm" ng-submit="submitForm(userForm)" novalidate>

 <!-- Name -->
 <label for="name">Name:</label>
 <input type="text" id="name" name="name" ng-model="user.name"

ng-required="true" />
 <span style="color: red" ng-show="userForm.name.$touched &&

userForm.name.$invalid">Name is required.

 <!-- Email -->
 <label for="email">Email:</label>
 <input type="email" id="email" name="email" ng-model="user.email"

ng-required="true" ng-pattern="/^[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,4}$/"/>
 <span style="color: red" ng-show="userForm.email.$touched &&

userForm.email.$invalid">Enter a valid email.

 <!-- Password -->
 <label for="password">Password:</label>
 <input type="password" id="password" name="password"

ng-model="user.password" ng-required="true" ng-minlength="6"
ng-maxlength="12" />
 <span style="color: red" ng-show="userForm.password.$touched &&

userForm.password.$invalid">Password must be between 6 and 12
characters.

 <!-- Submit Button -->
 <button type="submit" ng-disabled="userForm.$invalid">Submit</button>

 </form>

 <div ng-if="formSubmitted">
 <h3>Form Submitted Successfully!</h3>
 <p>Name: {{ user.name }}</p>
 <p>Email: {{ user.email }}</p>
 <p>Password: {{ user.password }}</p>
 </div>

</div>

<script>
 // AngularJS Application and Controller
 var app = angular.module('formApp', []);
 app.controller('formCtrl', function($scope) {

 // Form submission logic
 $scope.submitForm = function(form) {
 if (form.$valid) {
 $scope.formSubmitted = true;
 } else {
 alert('Please fill out the form correctly.');
 }
 };
 });
</script>

</body>
</html>

Q10(a) Briefly explain about AngularJS Events with an example.
Events

10 L3 CO4

Q10
(b)

Explain Angular JS Forms and its elements.
Form:-

AngularJS facilitates you to create a form enriches with data binding and
validation of input controls.

Input controls are ways for a user to enter data. A form is a collection of
controls for the purpose of grouping related controls together.

10 L3 CO4

Following are the input controls used in AngularJS forms:

o​ input elements
o​ select elements
o​ button elements
o​ textarea elements

AngularJS provides multiple events that can be associated with the HTML
controls. These events are associated with the different HTML input
elements.

Data-Binding

Input controls provides data-binding by using the ng-model directive.

<input type="text" ng-model="firstname">

The application does now have a property named firstname.

The ng-model directive binds the input controller to the rest of your
application.

The property firstname, can be referred to in a controller:

Example

<script>​
var app=angular.module('myApp',[]);​
app.controller('formCtrl', function($scope){​
 $scope.firstname = "John";​
});​
</script>

It can also be referred to elsewhere in the application:

Example​

<form>​
 FirstName: <input type="text" ng-model="firstname">​
</form>​
​
<h1>You entered: {{firstname}}</h1>

Checkbox

A checkbox has the value true or false. Apply the ng-model directive to a
checkbox, and use its value in your application.

Example

Show the header if the checkbox is checked:

 <form>​
 Check_to_show_a_header:​
 <input type="checkbox" ng-model="myVar">​

</form>​
​
<h1 ng-show="myVar">My Header</h1>

Radio Buttons

Bind radio buttons to your application with the ng-model directive.

Radio buttons with the same ng-model can have different values, but only
the selected one will be used.

Example

Display some text, based on the value of the selected radio button:

<form>​
 Pick_a_topic:​
 <input type="radio" ng-model="myVar" value="dogs">Dogs​
 <input type="radio" ng-model="myVar" value="tuts">Tutorials​
 <input type="radio" ng-model="myVar" value="cars">Cars​
</form>

The value of myVar will be either dogs, tuts, or cars.

Selectbox

Bind select boxes to your application with the ng-model directive.

The property defined in the ng-model attribute will have the value of the
selected option in the select box.

 Example

Display some text, based on the value of the selected option:

<form>​
 Select_a_topic:​
 <select ng-model="myVar">​
 <option value="">​
 <option value="dogs">Dogs​
 <option value="tuts">Tutorials​
 <option value="cars">Cars​
 </select>​
</form>

Example:-

<!DOCTYPE html>
<html lang="en">

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.mi
n.js"></script>
<body>

<div ng-app="myApp" ng-controller="formCtrl">
 <form novalidate>
 First Name:

 <input type="text" ng-model="user.firstName">

 Last Name:

 <input type="text" ng-model="user.lastName">

 <button ng-click="reset()">RESET</button>
 </form>
 <p>form = {{user}}</p>
 <p>master = {{master}}</p>
</div>

<script>
var app = angular.module('myApp', []);
app.controller('formCtrl', function($scope) {
 $scope.master = {firstName:"John", lastName:"Doe"};
 $scope.reset = function() {
 $scope.user = angular.copy($scope.master);
 };
 $scope.reset();
});
</script>

</body>
</html>

Output:-
FirstName:​

​
LastName:​

​
​
RESET

form = {"firstName":"John","lastName":"Doe"}

master = {"firstName":"John","lastName":"Doe"}

	Basic Structure of XHTML Documents
	Breakdown of Structure:

	1. Heading Tag (<h1> to <h6>)
	2. Hypertext Link Tag (<a>)
	Syntax:

	3. Image Tag ()
	Syntax:

	4. Progress Tag (<progress>)
	Syntax:

	1. Inline CSS
	Example:

	2. Internal CSS (Embedded CSS)
	Example:

	3. External CSS
	CSS File (styles.css):

	1. Universal Selector (*)
	Example:

	2. Element Selector (Tag Selector)
	Example:

	3. Class Selector (.)
	Example:

	4. ID Selector (#)
	Example:

	Ways of Creating Arrays in JavaScript
	1. Using Array Literals (Most Common Way)
	1. push()
	2. pop()
	3. shift()
	4. unshift()
	5. forEach()
	Document Object Model (DOM) in JavaScript
	🔹 Why DOM is Important
	DOM Tree Example for a Simple HTML Page
	Common DOM Methods
	Brief Description of window Object Properties and Methods in JavaScript
	🔹 Common Properties of the window Object
	🔹 Common Methods of the window Object
	BASIC CONCEPTS OF EVENT HANDLING
	EVENTS, ATTRIBUTES, AND TAGS
	1.​AngularJS Numbers
	2.​ AngularJS Strings
	3.​ AngularJS Objects
	4.​ AngularJS Arrays
	❖​What is AngularJS?
	🔹 Key Features of AngularJS:
	❖​Explanation of AngularJS Directives:
	(i) ng-app
	(ii) ng-model
	(iii) ng-bind
	Types of Services in AngularJS
	Creating a Custom Service
	1. Using Factory

	 Explanation:-
	2. Using Service

	 Explanation:-
	3. Using Provider

	 Explanation:-
	Built-in AngularJS Services
	1. $http (For AJAX requests)
	<!DOCTYPE html>
	<html>
	<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
	<body>
	
	<div ng-app="myApp" ng-controller="myCtrl">
	
	<p>Today's welcome message is:</p>
	
	<h1>{{myWelcome}}</h1>
	
	</div>
	
	<p>The $http service requests a page on the server, and the response is set as the value of the "myWelcome" variable.</p>
	
	<script>
	var app = angular.module('myApp', []);
	app.controller('myCtrl', function($scope, $http) {
	 $http.get("welcome.htm").then(function (response) {
	 $scope.myWelcome = response.data;
	 });
	});
	</script>
	
	</body>
	</html>
	
	2. $timeout (For Delayed Execution)
	3. $interval (For Repeated Execution)
	<!DOCTYPE html>
	<html>
	<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
	<body>
	
	<div ng-app="myApp" ng-controller="myCtrl">
	
	<p>The time is:</p>
	
	<h1>{{theTime}}</h1>
	
	</div>
	
	<p>The $interval service runs a function every specified millisecond.</p>
	
	<script>
	var app = angular.module('myApp', []);
	app.controller('myCtrl', function($scope, $interval) {
	 $scope.theTime = new Date().toLocaleTimeString();
	 $interval(function () {
	 $scope.theTime = new Date().toLocaleTimeString();
	 }, 1000);
	});
	</script>
	
	</body>
	</html>
	

	AngularJS Program to Demonstrate Client-Side Form Validation
	❖​ Key Features of AngularJS Form Validation:
	❖​ AngularJS Client-Side Form Validation Example:
	Data-Binding
	Example
	Example​

	Checkbox
	Example

	Radio Buttons
	Example

	Selectbox
	 Example

