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Explain the general framework for analyzing the efficiency of algorithms.
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The Analysis Framework
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Units for Measuring Running Time

The next issue concerns units for mcﬂsurin_g an fllgurllh.n?‘s runnmg time, (y
course, we can simply use some standard unit ln! time m%‘dsuruncnifa second
or millisecond, and so on—to measure the running time of a progru‘m implemen.
ing the algorithm. There are obvious drawbacks to such an ap‘pmdch‘. how;ucr
dependence on the speed of a particular computer, depgndcnc&. on l‘huiqtu;m_\- o
a program implementing the algorithm anq of the compiler us.cd in gLnLr‘ltlnglh(
machine code, and the difficulty of clocking the actual running time of the pro-

gram. Since we are after a measure of an algorithm’s efficiency, we would like 1o
have a metric that does not depend on these extraneous factors.

One possible approach is to count the number of times each qf the algumhmf
operations is executed. This approach is both excessively difficult and, as
shall see, usually unnecessary. The thing to do is to identify the most importan
operation of the algorithm, called the basic operation, the operation contributin

the most to the total running time, and compute the number of times the bast
operation is executed. o

As a rule, it is not difficult to identify the basic operation of an algorithm: !
15 usually the most time-consuming operation in the algorithm’s innermost loof
For exam

ple, most sorting algorithms work by comparing elements (keys) 0t
list being sorted with each other;

for such algorithms, the basic operation is ‘ }'|
comparison. As another example, algorithms for mathematical problems l."p'c.;llr"
involve some or all of the four arithmetical operations: addition. subtracti”
multiplication, and division. Of the four, the most time-consuming operatio®
division, followed by multiplication and then addition and subtraction. with [r'
last two usually considered together?
~ Thus, the established framework for the analysis of an algorithm's tim *.
ficiency SUggests measuring it by counting the number of times the algorit!"
basic operation s ¢xecuted on inputs of size 5. We will find out how 10 ‘"”[m‘f;
: onrecursive and recursj
respectively,
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2.1 The Analysis Framework A

the running time 7' (n) of a program implementing this algorithm on that computer
by the formula

T(n) ~c,,C(n).

op
Of course. this formula should be used with caution. The count C(n) does not
contain any information about operations that are not basic, and, in fact, the
count itself is often computed only approximately. Further, the constant c,, is
also an approximation whose reliability is not always easy to assess. Still, unless
n is extremely large or very small, the formula can give a reasonable estimate of
the algorithm’s running time. It also makes it possible to answer such questions as
“How much faster would this algorithm run on a machine that is 10 times faster
than the one we have?” The answer is, obviously, 10 times. Or, assuming that
Cn) = %n (n — 1), how much longer will the algorithm run if we double its input
size? The answer is about four times longer. Indeed, for all but very small values
of n,

Cn) = %n(n Y |

BN | =

1
2
and therefore
T@2n) _€pCQ2n)  52n) 3
T(”) copc(n) %nz
Note that we were able to answer the last question without actually knowing
the value of c,,: it was neatly cancelled out in the ratio. Also note that % the
multiplicative constant in the formula for the count C(n), was also cancelled out.

It is for these reasons that the efficiency analysis framework ignores multiplicative
constants and concentrates on the count’s order of growth to within a constant

multiple for large-size inputs.

Orders of Growth

Why this emphasis on the count’s order of growth for large input sizes? A differ
ence in running times on small inputs is not what really distinguishes efficien
algorithms from inefficient ones. When we have to compute, for example, thq
greatest common divisor of two small numbers, it is not immediately clear hoy
much more efficient Euclid’s algorithm is compared to the other two algorithm
discussed in Section 1.1 or even why we should care which of them is faster an{
by how much. It is only when we have to find the greatest common divisor of twy
large numbers that the difference in algorithm efficiencies becomes both clear ang
important. For large values of n, itis the function’s order of growth that counts: jus
look at Table 2.1, which contains values of a few functions particularly importan
for analysis of algorithms. _
The magnitude of the numbers in Table 2.1 has a profound significance 10
the analysis of algorithms. The function growing the slowest among these is th
logarithmic function. It grows so slowly, in fact, that we should expect a progrin




Fundamentals of the Analysis of Aigorthm Efficiency

TABLE 2.1 Values (some approximate) of several functions important f,
analysis of algornthms

no logan o nlogyn on? n 2" n!

10 33 10t 3310 107 10° 103 3.6.106
1071 66 102 6610 104 10 .31 934019
10° 10 100 1.010* 10 10

10¢ 13 104 1.310° 108 1012

108 | 17 105  1.7.10° 10 10

100 | 20 100 20100 102 108

implementing an algorithm with a logarithmic basic-operation count to run pract;.
cally instantaneously on inputs of all realistic sizes. Also note that although specific
values of such a count depend, of course, on the logarithm’s base, the formula

log, n =log, blog, n

makes it possible to switch from one base to another, leaving the count logarithmic
but with a new multiplicative constant. This is why we omit a logarithm’s base and
write simply log » in situations where we are interested just in a function’s order
of growth to within a multiplicative constant.

On the other end of the spectrum are the exponential function 2" and the
factorial function n! Both these functions grow so fast that their values become
astronomically large even for rather small values of ». (This is the reason why we
did not include their values for n > 10? in Table 2.1.) For example, it would take
about 4 - 10" years for a computer making a trillion (10!2) operations per second
to execute 2" operations. Though this is incomparably faster than it would have
taken to execute 100! operations, it is still longer than 4.5 billion (4.5 - 10%) years—
the estimated age of the planet Earth. There is a tremendous difference between
the orders of growth of the functions 2" and n!, yet both are often referred to as
“exponential-growth functions” (or simply “exponential”) despite the fact that.

strictly speaking, only the former should be referred to as such. The bottom line.
which is important to remember, is this:

Algorithms that require an exponential number of operations are practical
for solving only problems of very small sizes.

Another way 1o appreciate the qualitative difference among the orders 0!
growth of the functions in Table 2.1 is to consider how they react 10, say,
twolold increase in the value of their argument n. The function log, » increases 1
value by just | (because log, 2n log, 2 +log,n = | 4 lng.nl;lhi‘.linc;n funcut
inereasces twolold, the linearithmic function n log, n increases slightly more that

twofold; the quadratic function #” and cubic function n* increase fourfold and
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eightfold, respectively (because (2m)? = 4n? and (2n)? = &n3): the value of 2" gets
squared (because 221 — (2")2); and n! increases much more than that (yes, even
mathematics refuses to cooperate to give a neat answer for n').

Worst-Case, Best-Case, and Average-Case Efficiencies

In the beginning of this section, we established that it is reasonable to measure
an algorithm’s efficiency as a function of a parameter indicating the size of the
algorithm’s input. But there are many algorithms for which running time depends
not only on an input size but also on the specifics of a particular input. Consider,
as an example, sequential search. Thisis a straightforward algorithm that searches
for a given item (some search key K) in a list of n elements by checking successive
clements of the list until either a match with the search key is found or the list
is exhausted. Here is the algorithm’s pseudocode, in which, for simplicity, a list is
implemented as an array. It also assumes that the second condition A[i] # K will
not be checked if the first one, which checks that the array’s index does not exceed
its upper bound, fails.

ALGORITHM  SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n —1]and a search key K
//Output: The index of the first element in A that matches K
i or —1 if there are no matching elements
i <0
while i < n and A[i] # K do
i<—i+1
ifi < nreturni
else return —1

Clearly, the running time of this algorithm can be quite different for the
same list size n. In the worst case, when there are no matching elements or
the first matching element happens to be the last one on the list, the algorithm
makes the largest number of key comparisons among all possible inputs of size
n. Cwar:l(n) =n.

The worst-case efficiency of an algorithm is its efficiency for the worst-case
input of size n, which is an input (or inputs) of size n for which the algorithm
runs the longest among all possible inputs of that size. The way to determine
the worst-case efficiency of an algorithm is, in principle, quite straightforward:
analyze the algorithm to see what kind of inputs yield the largest value of the basic
operation’s count C(n) among all possible inputs of size n and then compute this
worst-case value C,,,,(n). (For sequential search, the answer was obvious. The
methods for handling less trivial situations are explained in subsequent sections of
this chapter.) Clearly, the worst-case analysis provides very important information

about an algorithm’s efficiency by bounding its running time from above. [n other
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t-Il“::rtilllwn runs the fastest.) Then we ascertain the value of C(n) on these mogy
tti:\‘cnicnl inputs. For example, the best-case inputs for SeqUCIth'lal Scaff?h are ists
of size n with their first clement equal to a search key; accordingly. Ce, (n) < |
for this algorithm. . :
The analysis of the best-case efficiency is not nearly as lmportant as that
of the worst-case efficiency. But it is not completely useless, either. Though we
should not expect to get best-case inputs, we might be able to take advantage of
the fact that for some algorithms a good best-case performance extends to some
useful types of inputs close to being the best-case ones. For example, there is a
sorting algorithm (insertion sort) for which the best-case inputs are already sorted
arrays on which the algorithm works very fast. Moreover, the best-case efficiency
deteriorates only slightly for almost-sorted arrays. Therefore, such an algorithm
might well be the method of choice for applications dealing with almost-sorted
arrays. And, of course, if the best-case efficiency of an algorithm is unsatisfactory.
we can immediately discard it without further analysis.
It should be clear from our discussion, however, that neither the worst-case
analysis nor its best-case counterpart yields the necessary information about an
algorithm’s behavior on a “typical” or “random” input. This is the information that
the average-case efficiency seeks to provide. To analyze the algorithm’s average
case a:fﬁ.cu:ncy.‘we must make some assumptions about possible inputs of size -
Let's consil_df:r again sequential search. The standard assumptions are that
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Recapitulation of the Analysis Framework

Betore we leave this section, let us summarize the main points of the fram
. ‘ L.“‘
outhined above. '

®  Both time and space efficiencies are measured as functions of the algorithy,
imput size.

®  Time efficiency is measured by counting the number of times the algorithy,
basic operation is executed. Space efficiency is measured by counting 1y,
number of extra memory units consumed by the algorithm.

®  The efficiencies of some algorithms may differ significantly for inputs of th,
same size. For such algorithms, we need to distinguish between the worst-case
average-case, and best-case efficiencies.

| |

The framework’s primary interest lies in the order of growth of the algorithms
running time (extra memory units consumed) as its input size goes to infinit

In the next section. we look at formal means to investigate orders of growth.In
Sections 2.3 and 2.4, we discuss particular methods for investigating nonrecursiv
and recursive algorithms, respectively. It is there that you will see how the analyss
framework outlined here can be applied to investigating the efficiency of specilic
algorithms. You will encounter many more examples throughout the rest of the
book.

|

Ans:

Define Big Oh, Big Omega and Big Theta definitions with examples and neat
diagrams.
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numbers to arrange them in ascending order: 87, 64, 59, 82, 34, 60.
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Write the algorithm for Bubble Sort and apply the same on the following set of]
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(Write the Warshall’s algorithm and find the Transitive Closure for the following

" lgraph in neat steps:
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Explain the Merge sort technique with a suitable example and write an algorithm
for the same.
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