USN

Internal Assessment Test 1 — March 2025

oTEARS Y,
&
&
=
@

El
¥

CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ASCREDITED WITH A++ GRADE BY NAAC

Sub: ANALYSIS & DESIGN OF ALGORITHMS

Sub Code:

BCS401

Branch:

AIML/CSE-AIML

Date: | 27.03.25 Duration: | 90 mins Max Marks: | 50

Sem/Sec:

IV-A,B&C

OBE

Answer any FIVE FULL Questions

MARKS | CO |RBT

Ans:

Explain the general framework for analyzing the efficiency of algorithms.

IOM |[COl1| L1




The Analysis Framework

In this section, we outline a general frame
rithms. We already mentioned in Section
time cfficiency and space cfficiency. Time effic
indicates how fast an algori
complexity.refers 1o the amount of mem
dition to the space needed for its input an
computing, both resources—time an

of relentless technological innovations have improved the con
memory size by many orders of magnitude. Now the amount
quired by an algorithm 1s typically not ol as much concern, W
there s still, of course. a difference between the f
wecondary memory, and the cache. The time issuc has not dimi
<ame extent. however. In addition, the rescarch ex
most problems, we can achicve much
space. Theretore. following a well-established tradition of algor
primarily concentrate on time efficiency, but the analytical
here s applicable to analyzing space efficiency as well.

more spectacular progre

Measuring an Input’s Size

L et’s start with the obvious observation that almost all algorit
larger inputs. For example, it takes longer to sort larger arra
matrices. and so on. Therefore, itis
as a function of some parameter 1 indicating the algori
cases. selecting such a parameter i quite straightforwar
the size of the list for problems of sorting, searching,
clement, and most other problems dealing with lists. For
a polynomial plx) = X ARG of degree n, it will b
or the number of its coefficients, which is larger by 1 tha
the discussion that such a minor
analysis.

There are situations, of course, where the choice O
an input size does matter. One such example is compu
n % n matrices. There ar¢ two natural measures
and more frequently used is the matrix order n.
is the total number of elements N in the matrices
is also more general since it is applicable to matrices
square.) Since there is a simple formula relating these (W
switch from one to the
be qualitatively different depending on W
Problem 2 in this section’s EXEICises)-

The choice of an appropriate size
the algorithm in question. For example, how should we meas
for a spell-checking algorithm? If the algorithm examines in
its input, we should measure the size by the number of ch
processing words, we should count their number in the input.

Wwe should make a special note about measuring inpu
solving problems such as checking primality of a positivel
is just one number, and itis this number’s magnitude th

d. For

of size for this
But the other

metric can be influence

ntege
at de

Some algorithms require more than one parametet Lo indicate the size ol theu

of vertices and the pumber of edges for alporithms on graphs rept

ory units required by t
d output. In the early
d space—were at a premium.

ast main memory, the slower

perience has sho

framework intre yduced

Jogical to investigate an algor
thm’s input size." In most

finding the list’s smallest
the problem of evaluating
¢ the polynomial’s degree
nits degree. You'll
difference is inconsequential for the efficiency

f a parameter indicating
ting the product of two

being multi
that are not nece
o measures, we can easily
other, but the answer about an algorithm’s efficiency will
hich of these two measure

dividual characters of
aracters; 1

{ size for

exented by the

work for analyzing the efficiency of algo-
1.2 that y
i
thm in question runs.

there are two kinds of efficienc
ency, also called time complexr'f:\‘
Space efficiency, also called space
he algorithm inad-
days of electront
Half a cenfun

pputer’s speed and
of extra space re-
ith the caveat that
nished quite 10 the
wn that for
<5 in speed than in
ithm texthooks, we

hms run longer on
ys, multiply larger
ithm’s efficiency

example, it will be

see from

problem. The first
natural contender
plied. (The latter
ssarily

s we use (see

operations of
n input’s size

d by
ure a

f it works by
-.ﬂgur'uhm\

Here, the inpul
¢ input

rn.
termines th

(he numbet
Lists)

mputs ey

i adjaceney




‘ g > size by the .
ize. In such situations. it is preferable to measure size By the number Of by
s/C. : B = .\

i
the n's binary representation:
b= log,n|+ 1

)
"-~||

- ives a better idea about the efficiency of algorithy ;
This metric usually gives a better idea B

tion.

Units for Measuring Running Time

The next issue concerns units for mcﬂsurin_g an fllgurllh.n?‘s runnmg time, (y
course, we can simply use some standard unit ln! time m%‘dsuruncnifa second
or millisecond, and so on—to measure the running time of a progru‘m implemen.
ing the algorithm. There are obvious drawbacks to such an ap‘pmdch‘. how;ucr
dependence on the speed of a particular computer, depgndcnc&. on l‘huiqtu;m_\- o
a program implementing the algorithm anq of the compiler us.cd in gLnLr‘ltlnglh(
machine code, and the difficulty of clocking the actual running time of the pro-

gram. Since we are after a measure of an algorithm’s efficiency, we would like 1o
have a metric that does not depend on these extraneous factors.

One possible approach is to count the number of times each qf the algumhmf
operations is executed. This approach is both excessively difficult and, as
shall see, usually unnecessary. The thing to do is to identify the most importan
operation of the algorithm, called the basic operation, the operation contributin

the most to the total running time, and compute the number of times the bast
operation is executed. o

As a rule, it is not difficult to identify the basic operation of an algorithm: !
15 usually the most time-consuming operation in the algorithm’s innermost loof
For exam

ple, most sorting algorithms work by comparing elements (keys) 0t
list being sorted with each other;

for such algorithms, the basic operation is ‘ }'|
comparison. As another example, algorithms for mathematical problems l."p'c.;llr"
involve some or all of the four arithmetical operations: addition. subtracti”
multiplication, and division. Of the four, the most time-consuming operatio®
division, followed by multiplication and then addition and subtraction. with [r'
last two usually considered together?
~ Thus, the established framework for the analysis of an algorithm's tim *.
ficiency SUggests measuring it by counting the number of times the algorit!"
basic operation s ¢xecuted on inputs of size 5. We will find out how 10 ‘"”[m‘f;
: onrecursive and recursj
respectively,

Here is an ; T icati I‘_“
e ; '> an Important application. [ et Cop be the execution time of 40 * (
ey ﬂ .fxslt OPeration on a particular computer, and Jet C(n) be the numb* -

> YIS operation needs 1o be executed for this algorithm. Then we can ™
On some compute iplicat .

puters, multiplication does
‘ : S not take *r than addition e
the Uming day Provided by Kemighan ;m:l l'll:l:kll:'lr;\'g;rtijl‘:m“ Ikllfl'mlm “]"’h“"“'““n o
+ Pp- 185-186)).




2.1 The Analysis Framework A

the running time 7' (n) of a program implementing this algorithm on that computer
by the formula

T(n) ~c,,C(n).

op
Of course. this formula should be used with caution. The count C(n) does not
contain any information about operations that are not basic, and, in fact, the
count itself is often computed only approximately. Further, the constant c,, is
also an approximation whose reliability is not always easy to assess. Still, unless
n is extremely large or very small, the formula can give a reasonable estimate of
the algorithm’s running time. It also makes it possible to answer such questions as
“How much faster would this algorithm run on a machine that is 10 times faster
than the one we have?” The answer is, obviously, 10 times. Or, assuming that
Cn) = %n (n — 1), how much longer will the algorithm run if we double its input
size? The answer is about four times longer. Indeed, for all but very small values
of n,

Cn) = %n(n Y |

BN | =

1
2
and therefore
T@2n) _€pCQ2n)  52n) 3
T(”) copc(n) %nz
Note that we were able to answer the last question without actually knowing
the value of c,,: it was neatly cancelled out in the ratio. Also note that % the
multiplicative constant in the formula for the count C(n), was also cancelled out.

It is for these reasons that the efficiency analysis framework ignores multiplicative
constants and concentrates on the count’s order of growth to within a constant

multiple for large-size inputs.

Orders of Growth

Why this emphasis on the count’s order of growth for large input sizes? A differ
ence in running times on small inputs is not what really distinguishes efficien
algorithms from inefficient ones. When we have to compute, for example, thq
greatest common divisor of two small numbers, it is not immediately clear hoy
much more efficient Euclid’s algorithm is compared to the other two algorithm
discussed in Section 1.1 or even why we should care which of them is faster an{
by how much. It is only when we have to find the greatest common divisor of twy
large numbers that the difference in algorithm efficiencies becomes both clear ang
important. For large values of n, itis the function’s order of growth that counts: jus
look at Table 2.1, which contains values of a few functions particularly importan
for analysis of algorithms. _
The magnitude of the numbers in Table 2.1 has a profound significance 10
the analysis of algorithms. The function growing the slowest among these is th
logarithmic function. It grows so slowly, in fact, that we should expect a progrin




Fundamentals of the Analysis of Aigorthm Efficiency

TABLE 2.1 Values (some approximate) of several functions important f,
analysis of algornthms

no logan o nlogyn on? n 2" n!

10 33 10t 3310 107 10° 103 3.6.106
1071 66 102 6610 104 10 .31 934019
10° 10 100 1.010* 10 10

10¢ 13 104 1.310° 108 1012

108 | 17 105  1.7.10° 10 10

100 | 20 100 20100 102 108

implementing an algorithm with a logarithmic basic-operation count to run pract;.
cally instantaneously on inputs of all realistic sizes. Also note that although specific
values of such a count depend, of course, on the logarithm’s base, the formula

log, n =log, blog, n

makes it possible to switch from one base to another, leaving the count logarithmic
but with a new multiplicative constant. This is why we omit a logarithm’s base and
write simply log » in situations where we are interested just in a function’s order
of growth to within a multiplicative constant.

On the other end of the spectrum are the exponential function 2" and the
factorial function n! Both these functions grow so fast that their values become
astronomically large even for rather small values of ». (This is the reason why we
did not include their values for n > 10? in Table 2.1.) For example, it would take
about 4 - 10" years for a computer making a trillion (10!2) operations per second
to execute 2" operations. Though this is incomparably faster than it would have
taken to execute 100! operations, it is still longer than 4.5 billion (4.5 - 10%) years—
the estimated age of the planet Earth. There is a tremendous difference between
the orders of growth of the functions 2" and n!, yet both are often referred to as
“exponential-growth functions” (or simply “exponential”) despite the fact that.

strictly speaking, only the former should be referred to as such. The bottom line.
which is important to remember, is this:

Algorithms that require an exponential number of operations are practical
for solving only problems of very small sizes.

Another way 1o appreciate the qualitative difference among the orders 0!
growth of the functions in Table 2.1 is to consider how they react 10, say,
twolold increase in the value of their argument n. The function log, » increases 1
value by just | (because log, 2n log, 2 +log,n = | 4 lng.nl;lhi‘.linc;n funcut
inereasces twolold, the linearithmic function n log, n increases slightly more that

twofold; the quadratic function #” and cubic function n* increase fourfold and




2.1 The Analysis Framework 73

eightfold, respectively (because (2m)? = 4n? and (2n)? = &n3): the value of 2" gets
squared (because 221 — (2")2); and n! increases much more than that (yes, even
mathematics refuses to cooperate to give a neat answer for n').

Worst-Case, Best-Case, and Average-Case Efficiencies

In the beginning of this section, we established that it is reasonable to measure
an algorithm’s efficiency as a function of a parameter indicating the size of the
algorithm’s input. But there are many algorithms for which running time depends
not only on an input size but also on the specifics of a particular input. Consider,
as an example, sequential search. Thisis a straightforward algorithm that searches
for a given item (some search key K) in a list of n elements by checking successive
clements of the list until either a match with the search key is found or the list
is exhausted. Here is the algorithm’s pseudocode, in which, for simplicity, a list is
implemented as an array. It also assumes that the second condition A[i] # K will
not be checked if the first one, which checks that the array’s index does not exceed
its upper bound, fails.

ALGORITHM  SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n —1]and a search key K
//Output: The index of the first element in A that matches K
i or —1 if there are no matching elements
i <0
while i < n and A[i] # K do
i<—i+1
ifi < nreturni
else return —1

Clearly, the running time of this algorithm can be quite different for the
same list size n. In the worst case, when there are no matching elements or
the first matching element happens to be the last one on the list, the algorithm
makes the largest number of key comparisons among all possible inputs of size
n. Cwar:l(n) =n.

The worst-case efficiency of an algorithm is its efficiency for the worst-case
input of size n, which is an input (or inputs) of size n for which the algorithm
runs the longest among all possible inputs of that size. The way to determine
the worst-case efficiency of an algorithm is, in principle, quite straightforward:
analyze the algorithm to see what kind of inputs yield the largest value of the basic
operation’s count C(n) among all possible inputs of size n and then compute this
worst-case value C,,,,(n). (For sequential search, the answer was obvious. The
methods for handling less trivial situations are explained in subsequent sections of
this chapter.) Clearly, the worst-case analysis provides very important information

about an algorithm’s efficiency by bounding its running time from above. [n other




41 Efficiency
Fundamentals of the Analysis of Algonthr

\ for any instance of sizen ;]|tI:c running time willnoy CXeeeq
. of-case 1n S.
on the worst-=C I\Lis' i[l: officiency for the best-case inpy
. . |
npu{ (or inputs) "_r size 1 fuzwh;Ch\:i}z,::g::,I;hm_ runs th
inputs of thal s12¢- Accordingly, WE €€ ¢ alyzc the hey
termine the kind of inputs for which the ¢,
C ) will be the smallest among all pﬂs:v,ihlc inputs (?[ 511:3 ”l: ﬂ(i':;):cflhm thc bes
ase does not mean the smallest input; 1t meqns the Input &2 * . v for which p
t-Il“::rtilllwn runs the fastest.) Then we ascertain the value of C(n) on these mogy
tti:\‘cnicnl inputs. For example, the best-case inputs for SeqUCIth'lal Scaff?h are ists
of size n with their first clement equal to a search key; accordingly. Ce, (n) < |
for this algorithm. . :
The analysis of the best-case efficiency is not nearly as lmportant as that
of the worst-case efficiency. But it is not completely useless, either. Though we
should not expect to get best-case inputs, we might be able to take advantage of
the fact that for some algorithms a good best-case performance extends to some
useful types of inputs close to being the best-case ones. For example, there is a
sorting algorithm (insertion sort) for which the best-case inputs are already sorted
arrays on which the algorithm works very fast. Moreover, the best-case efficiency
deteriorates only slightly for almost-sorted arrays. Therefore, such an algorithm
might well be the method of choice for applications dealing with almost-sorted
arrays. And, of course, if the best-case efficiency of an algorithm is unsatisfactory.
we can immediately discard it without further analysis.
It should be clear from our discussion, however, that neither the worst-case
analysis nor its best-case counterpart yields the necessary information about an
algorithm’s behavior on a “typical” or “random” input. This is the information that
the average-case efficiency seeks to provide. To analyze the algorithm’s average
case a:fﬁ.cu:ncy.‘we must make some assumptions about possible inputs of size -
Let's consil_df:r again sequential search. The standard assumptions are that
St o Ao 5 e LS Lot
for every i. Under these ass e Tl e ith position of the list is the same
orevery . ese assumptions—the validity of which is usually difficult ©
venify, their reasonableness notwithstanding—we can fi -age numbs!
of key comparisons (“”'k’(n) as follows. In the F‘m . nd the av‘cmgu l,],Ll“ the
probability of the first match occurring in the _f;‘:se 0‘1 a suc::csstu.l search. {“I
every (., and the number of comparisons made ith position of the list s p /"
is obviously . In the case of : S IRHGE by the
Y 1 he case of an MCCOLR
will be n with the probabil ‘unsuccessful se
ability of such

words. it guarantees th:

) its running time
Coiorer(). 18 running "

) "i‘hc best-case efficiency of an algorit hm
of size n. which is anl
fastest among all possible
case efficiency as follows. First, we de

algorithm in such a situatn!
arch, the number of comparse™
asearch being (1 p). Therefore.

Cogmt=li-E 4084, 0y B )
b Jl }
7] " A Ifn-(l P
I n "
424 o ooy .
H .

I ”l t ”(l ’,’

pPoutn gl

n ) Fa(l - py = Pt

) ) tondl !,)‘




Recapitulation of the Analysis Framework

Betore we leave this section, let us summarize the main points of the fram
. ‘ L.“‘
outhined above. '

®  Both time and space efficiencies are measured as functions of the algorithy,
imput size.

®  Time efficiency is measured by counting the number of times the algorithy,
basic operation is executed. Space efficiency is measured by counting 1y,
number of extra memory units consumed by the algorithm.

®  The efficiencies of some algorithms may differ significantly for inputs of th,
same size. For such algorithms, we need to distinguish between the worst-case
average-case, and best-case efficiencies.

| |

The framework’s primary interest lies in the order of growth of the algorithms
running time (extra memory units consumed) as its input size goes to infinit

In the next section. we look at formal means to investigate orders of growth.In
Sections 2.3 and 2.4, we discuss particular methods for investigating nonrecursiv
and recursive algorithms, respectively. It is there that you will see how the analyss
framework outlined here can be applied to investigating the efficiency of specilic
algorithms. You will encounter many more examples throughout the rest of the
book.

|

Ans:

Define Big Oh, Big Omega and Big Theta definitions with examples and neat
diagrams.

10M

CO1 | L2




N
™
B - 3
L 10004 4 ¢ ﬁ%qfnf}’ﬂ(”) '
eolied, b vad
AR iwon’ + 4n _gaaff/l)

3
coon’+Yyn = 100 n’+4n
. o

C 8&«,)
tn) -

mam wetotion (6)-
AW”‘H”) (}!_ cold to bt @(3@)) , dustid
tNE C1g0)) wian i L
Laundal bubwen L condwiduied  hetwern 00 P
—_— (ﬁ)mwmbow(o)-)ww
c,?}ln) i 6/n) < cl(a(h),

whrt ¢ and o Akt covutap ks
cind ?Uﬂ) O the erdes %qu% 9—6 tu L(CULCJ"LL?”

ﬂ




g\\

CMR

L),-?(M)
! )

o o o «ram)-

., -

no
4 also s g sunandyy, netatien
and 5 und to danstfe mwwwxcwm:,m&m
am elopunt &3 tn brlween e :
O Ee 3). W7
:on” e p(n?)
c[ﬂ(n) z 6/n)é cZ-ain)-

j{n) - n?-

jn): r’

3 5 3 -

(eB take (axr | ouwnd (08 2

et

n> 2 V)gé 203 wlhdch u

A améifd -




’)

B‘ua 0 netation:
t(n) i caid b bt w (ﬂ /) /

A funclon
t(n) £ 0(36”)) y

vt netid :
wbhen oF O BW ﬂ-w
lowetlon  suech thak

A & eqiy:

e function o) o lessor et 6
inuf,o C"a&)/wwﬁﬁn)dm.
owss ofy uowth ond ¢l gome conatorts
fporast n=no |

A




§\\\

CMR

fLua 0 moml,wn Ut uM g,a)z MJW? woeist code
© cunaiLy ma_mfllaw%ﬁm; wot , e for oxampls,
T damant Ao be acasehed O Mwwéﬂmmzj-

m: pie o(yﬂ)
HAL zam) W
and crj(ﬂ)*n
wmons c=4 ¥ nsn
S0t e o(n)

m? (Dmﬂa (-1) notatidn -

A punetlon  tin) b Saud 0 ba b LGn) , et
Anaded b(d tin) & hﬁ/(?m)) wian &G

| batundad BHOW 'owz feenelion aum&mt
| {){n) -y C,V?Cm), thee 5W\°H-0Vl 6/";‘)

¢ ‘a_[n), W ﬁ[y)) by

s gute tron quad o
bt aidesy of glowth and ¢ U some cowstant for
alk n=np- '
uwuaﬂbd ' usd 40 dungte Besk coase reenoriver Sy

on olgeitthm | oers | et Franple . tla elewent 4o
bt storched ;E) atl  the ﬁu,df‘ pesilion &) net elen

prteerd o the Wa7

—

numbers to arrange them in ascending order: 87, 64, 59, 82, 34, 60.

Ans:

Write the algorithm for Bubble Sort and apply the same on the following set of]

10M

CO2

L3




I —

s o] o

2 4 5
| ¢ 2 Uolek deonank

\_____—J
Wow e cmvwfw\-*

1 >Ha T RWOP

EMDEDECN

T 3
| P

MO oot uwdares 28 3 lenunds -
&1 =48 ——+gw¢|o A

eu|sa |81 |21 |3Y |gq .

° V3 4 5
|

Cowapost  Seund  § udux denrends -
21> a2y _*é?u)a.lz

s |sa ey (B )
o] yu

3 Y c
| I

\

cind o{) Mualing 4

epand  “y, U




F Sf(lﬂ(l.'\% yrd el aalion
el @ 54
ey >59- wap

BES uﬁ]—}.ﬂTﬂj
2 » 4 %

(OMAf‘U.Rr(

e

o ]

N
CMR

comfcwmj by and 92, 84282, no swWep

\ CovwlaMf} R £ %Y
| 5a | gy |34 | 9r |60 MJ
\ b | I

| I
| ng-gu[ co]om!ﬂ? l

‘ o 234 5

Hﬂ)\tll/.(aoﬂ)u{}\amné.

-
|

a| 24| ey (oo |8V

Lot
F;[-;QWGM LU g R’Lis'] |
SRS R TS 1

S 817 3~ hwep

wwfcwaéj, g9 and 60
gL 760 ngo.fw

Hom chesaton & completes
ool treond Lot Lamend
Lo b ceuntet pssdion

| I 59 % 64y — BAKEY P no swop
bY &3y = bU >3y —swap.

bY rbp — FWep

R 6Y<QL —=noop
&y MHoaklen 2 cormplakes
6h s In <tlRect ploce -

whudion Y |
Lot A and 2Y Y LA, swep
f97U\'L,°\ G°_\GU\ __\__3rl LB'L_! Maxe U A o durd -
\0_\\ X;'L T “ 5 .




Bubple solt -

Atgmum Bukblisert (1, A[])Zf

/) uput o eize of MMJE Al (mfuf ungidesed axsay
(! a,uJ-Puk ,g,gﬂvkdaumat

fot (Lkouw){

o (j«— v Ho ni-a)
i (Alj1 > A1) {

cunp (A AEHD)

}
caa'wn ALY - [g1]e4]54] 8‘2—] 34Jco|

® 4 2 3

-meqmwmmmhhpww
ot oA ukergion MW&M%}SM.

%y 2 udures ks

°! et AGT 5 MG LT we swap
: ib‘{ig'(i

o |

(What is Divide & Conquer technique? Explain with a neat diagram and an example.

Ans:

10M

CO2

L2




SN

CMR

—

Led WA Ao aum hmm«.fg{h at WW '

e weed  foo ceu e aMﬂJﬂ cur:u? WW ;
Lo [l ]

Wt ok dow = A[0]S 2
and ol "“‘34" = A[n-11= A[4] = 3. '
now 4o Mvtdy , Lt colodots e ol volue

A e amag s md s (e raige) 2

thr mw)& &2 diveded  hom Rew do mid .
omd vwi,d‘*.’x}o.lf@af") ' :

EL o] (w] ]
0+ 0 > 3 I
e
e

P e (m"’"L’**“(‘ ConQ Win

!QL‘Q/\ UGQII( O ! CDmbLm'







§\\

CMp

A)| Pevde and conquar |
e nuthod dwtdt and MM:'{; a withod
ef ”’"""i*ﬁ problent tike oAb, by
w:(;ua 3 pawn YBPS -
conquit o soli tu sub problend
Jr divide o conquwn eknique ssually
o and ln aoling pwigt ot , quitk cout
WMWJLJ/LA dvtdlod et ﬂpqx}f.
awe purtus olivided ks meie 2 parks aach.
mmwm{mmuwwwdm
Wt f6) B path prohien,
Prol e diveatbn  apg tong

L.FM_('&Lﬁ Qﬁ ) Ipwa.‘.
hap pos Al Aay ww;bd ,

(Write the Warshall’s algorithm and find the Transitive Closure for the following

" lgraph in neat steps:

10M

CO4

L3







CMR

_%*\S

!

0

°]

I

2 TransHve loswge |

B
o

o

oro

Pz




§

CMR

‘ L}Lﬁfou?hm Wasshalls (b, MJ){
7 ogput Hoe of n o0 matary . A[] ~adjubuaﬂ malesz
flowhput + Thaksibie clesues matsx

hex ( <0 Jo n-) {

i (AlEdlI==0 o AL[Kl==2f
A[K](J] == ) {

-

: alilly] = o+

S

5

mathid' -

o ‘' 2 3 4
o1 0 o o0 o
| i N 1 o O
211 o o 1 0
21 0 O g &§ 0
4kLo o 1+ 1 0




s\\\
— Mg
&
[ ===
0—0 o — | O — 2 0~ 2 0'_7”1
1— 0 | —> | (—2 13
| —sp 2773
2 —50 22— 2
y—o Y —! y—a 73
(b take ) mm‘ummw?mdx-
0o 12 3 94
o
B & .- 8 B .8
b o ' o o
21 o ot Qo
e o o oo
jle o 1o
Lobs toke @ ah cﬂwneouwwﬁ noole
0 34
ol O 0O 8 & o
\ \ @) L 0 0
2]\ o O L o
21 o o O 0 0
“1 0 O \ (O
A
Explain the Merge sort technique with a suitable example and write an algorithm
for the same.
I0M | CO2| L2
Ans:
Cl CClI HOD

All the Best




